IIW Guideline for International Welding Engineers, Technologists, Specialists and Practitioners

PERSONNEL WITH QUALIFICATION FOR WELDING COORDINATION

Minimum Requirements for the Education, Examination and Qualification

MINIMUM REQUIREMENTS FOR THE EDUCATION, TRAINING, EXAMINATION, AND QUALIFICATION

PERSONNEL WITH QUALIFICATION FOR WELDING COORDINATION

(as described in ISO 14731 and other International and National Standards)

International Welding Engineer (IWE)

former : Doc. IAB-002-2000/EWF-409 Rev. 2

International Welding Technologist (IWT)

former : Doc. IAB-003-2000/EWF-410 Rev. 2

International Welding Specialist (IWS)

former : Doc. IAB-004-2000/EWF-411 Rev. 1

International Welding Practitioner (IWP)

former : Doc. IAB-005-2002/EWF-451 Rev. 1

Prepared and issued by the IAB-International Authorisation Board based on the EWF above mentioned Guidelines Under the authority of the IIW-International Institute of Welding

For more information regarding the Qualifications System, the IAB/EWF <u>Management Team or the National ANB should be contacted</u> (see in the IIW and EWF sites the ANB contacts)

Published by:

EWF-IAB/IIW Secretariat Av. Prof. Dr. Cavaco Silva, 33 Taguspark – Apartado 023 P-2741-901 Porto Salvo Portugal

© Copyright EWF

Tel: E-mail: +351.21 5815200 ewf-iab@ewf.be www.iiwelding.org www.ewf.be

Table of Contents

P	efac	e	5
1		Introduction	6
	Task corre	Descriptions: Knowledge, skills and competence levels achieved for each qualification level and their elation with ISO 14731	7
2		Routes to Qualification	. 10
	2.1	The Standard Route	10
	2.2	Blended Learning Route	10 10
	2.4	The experiential Route or "The Career Development Route"	10
	2.5 2.6	The Transition Route	10 10
3		General Access Conditions	. 11
	3.1	International Welding Engineer IWE	11
	3.2	International Welding Technologist IWT	12
	3.3 3.4	International Welding Specialist IWS	13 14
4	••••	Special Requirements	. 15
	41	Standard Route	15
	4.2	Alternative Route	15
	4.2.	1 International Welding Engineer IWE	16
	4.2. 4.2	.2 International Welding Technologist IWT	17 18
	4.2.	4 International Welding Practitioner IWP	19
S	ectio	n I: Theoretical and Practical Education – Part 1, Part 2 and Part 3, Syllabus an	nd
		Performance Objectives	. 20
I. 1		Theoretical Education - Part 1 and Part 3	. 20
	Modu	ule 1: Welding processes and equipment	21
	Modu	ule 2: Materials and their behaviour during welding	56
	Modu	ule 3: Construction and design	90 106
14		arctical Education IN/C 0	407
1.4	: The		121
	0.1	Basic Metrology applicable to Welding (4 hours)	.127 128
	0.2	Technical Drawings (8 hours).	.128
	0.4	Basics of Electro-technology (2 hours)	.129
	0.5	Basics of Chemistry (2 hours)	.129 130
	0.7	Metal products (2 hours)	.130
	0.8	Machining of Materials (2 hours)	.130
	0.9 0.10	Joining elements (2 hours)	.131 131
	0.11	Calculation of Strength (4 hours)	.131
1.3	8.	Practical Education – Part 2	132
	I.3.1	For the IWE; IWT, and IWS	.132
			400

Section	on II: Examination and Qualification	134
1.	Introduction	
2.	Approval of Training Courses	
3.	Examination Board.	
4.	Admission to the Examination	
5.	Examination procedures	
5.1	Written examination	
5.2	Oral Examination	
5.3	Practical examination	
5.4	Intermediate examination	
5.5	Resources to be used in examinations except harmonised examinations	
6.	Evaluation of Performance	
7.	Re-examination	
8.	Appeals Procedure	
9.	International Welding Diploma's	
10.	Transition Arrangements	
Арре	ndix I: <u>Requirements for equipment, facilities and specimens for the Inter</u> <u>Welding Engineer (IWE), Technologist (IWT), Specialist (IWS) and Practit</u> (IWP) course leading to the award of IIW <u>qualification</u>	<u>national</u> <u>ioner</u> 138
Appe	ndix II: Abbreviations for Processes	139
Appe	ndix III: Requirements for ANB Detailed Assessment used in Alternatives	Routes141
Appe	ndix IV: List of Referenced Standards	148

This document is based upon the European Welding Engineer/ Technologist/ Specialist/ Practitioner Guidelines as developed by the European Federation for Welding, Joining and Cutting (EWF), through an Agreement first signed 19 July, 1997, at the Annual Meeting of the International Institute of Welding (IIW) in San Francisco, California, USA and which has been renewed and further developed since then. It has been established in that Agreement that the International Welding Engineer/ Technologist/ Specialist/ Practitioner Diploma is equivalent to the European Welding Engineer/ Technologist/ Specialist/ Practitioner Diploma.

The International Institute of Welding IIW has delegated the responsibility for the management of the qualification and certification systems to the International Authorisation Board (IAB).

This guideline for the international education, training, examination and qualification of welding personnel has been prepared, evaluated and formulated by Group A "Education, Training and Qualification" of the IAB.

Any EWF Authorised National Body ANB is permitted to issue EWF diplomas equivalent to IIW ones that have been issued by the same ANB (Automatic Route).

Copies of this document are available from the EWF/IAB Secretariat or the national ANB's.

Figure 1: Organisation of the IAB

MINIMUM REQUIREMENTS FOR THE EDUCATION, TRAINING, EXAMINATION AND QUALIFICATION OF PERSONNEL

1 Introduction

Section I of the guideline covers the minimum requirements for education and training, which have been agreed upon by all IAB - ANBs, in terms of objectives, scope, Learning Outcomes and the teaching hours to be devoted to achieving them. It will be revised periodically by IAB Group A to take into account changes to reflect the "state of the art". Students successfully completing a course of education and examinations will be expected to be capable of applying the welding technology at a level consistent with the qualification diploma.

Section II of the guideline covers the rules for examination and qualification.

Madulas of the cratical advaction and fundamental		Teaching hours*								
modules of theoretical education and fundamental	IWE		IWT		IWS		IWP			
	МТ	P1	MT	P1	MT	P1	MT	P1		
1. Welding processes and equipment	95	46	86	46	53	20	32	19		
2. Materials and their behaviour during welding	115	33	96	31	56	16	23	10		
3. Construction and design	62	14	44	14	24	4	6	0		
4. Fabrication, applications engineering	116	0	83	0	56	0	29	0		
Sub-total	388	93	309	91	189	40	90	29		
Fundamental practical skills (Part 2)	60		60		60		60			
Total	448		369		249		150			

The modular course contents are given in the following structure (overview):

* Teaching hours are the minimum for the Standard Route, see 2.6;

MT = Module Total (Part 1 + Part 3);

P1 = Part 1;

Figures under P1 are given for the Standard Route (see 4.1).

It is to be noted that the overall structure of the syllabus for all levels (IWE, IWT, IWS, and IWP) is similar, but some topics are not considered in all levels of qualification. These topics are indicated by 0 hours in this guideline. The depth to which a topic is dealt with is indicated by the number of hours allocated to it in the guideline. This will be reflected in the scope and depth of the examination.

The objectives of the education, training and examinations in terms of learning outcomes are described in two ways: generically for each level as mentioned in Appendix V; and more specifically and in more detail under the heading of 'Expected Results' in each section of the Syllabus.

Additionally, Appendix V shows a classification for each level of learning outcome (general) into an EQF-level (EQF= European Qualification Framework).

The text on the following page is the IIW view of the relevant **Task Descriptions** and should be considered only as guidance to explain the level of knowledge, competence and skills, for each qualification level under this guideline.

Task Descriptions: Knowledge, skills and competence levels achieved for each qualification level and their correlation with ISO 14731

IWE – Knowledge, Competence and Management

A candidate completing the IWE training under this program is expected to acquire advanced knowledge and critical understanding of welding technology application.

He / she shall have advanced competence and skills at a level that is required in the field of welding technology which demonstrate:

- technology mastery and required innovation
- being able to solve high-level complex and unpredictable problems
- the ability to manage high complex technical and professional activities or projects related to welding applications
- taking responsibility for decision making in unpredictable work or study context
- taking responsibility for managing professional development of individuals and groups

IWT – Knowledge, Competence and Management

A candidate completing the IWT training under this program is expected to acquire an overall knowledge and understanding of welding technology application.

He / she shall have competence and skills at a level that is required in the field of welding technology which demonstrate:

- being able to solve low-level complex problems
- the ability to manage in detail the welding applications and related professional activities or projects
- taking responsibility for decision making in low-level complex work or study context
- taking responsibility to define the tasks of welding or related personnel
- being able to manage professional development of individuals and groups

IWS – Knowledge, Competence and Management

A candidate completing the IWS training under this program is expected to acquire a specialized and factual knowledge in the field of welding technology.

He / she shall have competence and skills at a level that is required in the field of welding technology which demonstrate:

- being able to develop solutions on common/regular problems
- being able to manage and supervise common or standard welding applications and related professional activities
- taking responsibility for decision making in common or standard work
- taking responsibility to supervise the tasks of welding and related personnel.

IWP – Knowledge, Competence and Management

A candidate completing the IWP training under this program is expected to acquire a basic knowledge in the field of welding technology.

He / she shall have competence and skills at a level that is required in the field of welding technology which demonstrate:

- being able to develop solutions on basic and specific problems
- being able to supervise basic welding applications and related professional activities
- taking responsibility for decision making in basic work
- taking responsibility to supervise the tasks of welding and related personnel

IAB-252r5-19

In correlation with essential coordination tasks as detailed in EN ISO 14731, the previous mentioned competences and skills will enable the candidate to effectively perform the following tasks:

	IWE	IWT	IWS	IWP	
Type of Construction concerned	Any type	With a low level of complexity	Regular and common	Basic specific works	
Welding construction contract re- quirements	able to re	view		not able to perform	
Technical review of the welding con- struction	able to pe	rform the task		not able to perform	
Subcontracting activities	able to sp sessment mentation	ecify requirements protocol, to super and monitor	s and as- vise imple-	able to supervise im- plementation and mon- itor	
Welding personnel and related per- sonnel needs and competences/ skills;	able to sp	ecify, supervise a	nd manage	able to supervise the welding personnel and monitor	
Equipment and means needed for the construction;	able to sp equipmen needed	ecify, validate and t, including the ca	able to understand and supervise the proper use		
Manufacturing plan;	able to sp manage	ecify, develop, va	able to monitor and im- plement		
Welding procedures needed for the construction;	able to sp date and	ecify, develop, ev manage	able to understand, im- plement		
Working instructions;	able to sp manage	ecify, develop, ev	able to understand, im- plement		
Base materials and welding consum- ables;	able to specify, validate and manage			able to monitor and su- pervise the proper use	
Inspection Testing Plan;	able to specify, review, develop, evalu- ate, validate and manage			able to understand, im- plement and monitor	
Heat treatments;	able to sp date and	ecify, develop, ev manage	aluate, vali-	able to understand, im- plement, supervise and monitor	
Corrective actions to solve welded construction non-conformances;	able to specify, review, develop, evalu- ate, validate and manage			able to implement, monitor and control	
Identification and traceability used in welding manufacturing;	able to specify, develop, evaluate, vali- date and manage processes			able to understand, control and supervise	
Construction quality records.	able to sp date and monitor a	ecify, develop, evan manage processe nd control	aluate, vali- s related to	able to collect, control, perform and supervise	

Characterization of the general description of IIW Qualifications, describing the Qualification descriptors in terms of Knowledge – K, Skills – S, Competences - C for each IIW welding coordination qualification

SUMMARY DESCRIPTION										
QUALIFICATION	KNOWLEDGE APPLICATION	SKILLS APPLICATION	COMPETENCES	EQF LEVEL	TEACHING HOURS	WORKLOAD* (hours)	ECVET POINTS**			
INTERNATIONAL WELDING ENGINEER	Highly specialised and forefront knowledge including original thinking, research and critical as- sessment of theory, principles and applicability of welding re- lated technologies.	Highly specialised problem- solving skills including critical and original evaluation, allowing to define or de- velop the best technical and economi- cal solutions, when applying welding processes and related technologies, in complex and unpredictable condi- tions.	Manage and transform the welding pro- cesses and related technologies in a highly complex context. Act as the full responsible person for the defi- nition and revision of the welding and related personnel's tasks.	7	448	836	75			
INTERNATIONAL WELDING TECHNOLOGIST	Advanced knowledge and critical understanding of the theory, prin- ciples and applicability of welding and related technologies.	Advanced problem-solving skills in- cluding critical evaluation, allowing to choose the proper technical and eco- nomical solutions, when applying welding and related technologies, in complex and unpredictable condi- tions.	Manage the applications of welding and re- lated technologies in a highly complex con- text. Act autonomously as the responsible person for the decision making and the definition of the welding and related personnel's tasks.	6	309	534	50			
INTERNATIONAL WELDING SPECIALIST	Specialised, factual and theoreti- cal knowledge of the theory, prin- ciples and applicability of the welding and related technolo- gies.	Specialised range of cognitive and practical skills, allowing to develop so- lutions or choose the appropriate methods, when applying welding and related technologies, in common/reg- ular problems.	Manage and supervise common or standard welding applications and related technolo- gies, in an unpredictable context. Take responsibility with limited autonomy for decision making in common or standard work and supervise the welding and related per- sonnel's tasks.	5	189	312	30			
INTERNATIONAL WELDING PRACTITIONER	Factual and theoretical knowledge (basic understanding) of the theory, principles and ap- plicability of the welding and re- lated technologies.	Fundamental range of cognitive and practical skills required to identify proper solutions, when applying weld- ing and related technologies, in basic and specific problems.	Self-manage within the guidelines of work, the applications of welding and related technolo- gies, in a predictable context, but subject to change. Take responsibility without autonomy for de- cision making in basic work and supervise basic tasks of welding and related personnel.	4	150	247	8			

* Workload is the minimum duration of the Teaching hours for the Standard route plus the hours the student needs for self-study.

** ECVET is the European Credit system for Vocational Education and Training.

2 Routes to Qualification

Five distinct routes to gaining the qualifications described in this document have been agreed.

- 1. The Standard Route
- 2. The Alternative Route
- 3. Blended Learning Route
- 4. The Experiential Route
- 5. Transition Route

2.1 The Standard Route

The Standard Route requires successful completion of IAB approved courses which are designed to meet all the requirements in this Guideline. This is the route (Path 1 in diagrams 1, 2, 3, and 4) recommended by IAB as offering the fastest, most comprehensive manner in which the syllabus may be covered.

The Standard Route also allows a limited amount of prior learning (Part 1 of each qualification course, see Section I) to be taken into account, for example during University or College courses or by blended learning (Path 2 in diagrams 1, 2, 3, and 4). This prior learning shall be approved by the ANB.

2.2 The Alternative Route

The Alternative Route is aimed at individuals who may already have experience of the job function at a particular level without holding the appropriate qualification diploma. These individuals will have already gained full or part knowledge of the syllabus defined in this guideline and can demonstrate their capability to proceed to examination either directly without compulsory attendance at an ANB approved training course or by attending only part of such a course.

2.3 Blended Learning Route

The Part 1 theory module may be taught in Blended Learning Programs under control of the ANB.

When the Part 1 and Part 3 theory modules are combined or the Part 3 theory module is taught separately the requirements of the latest edition of the Blended Learning Guideline IAB 195 shall be followed.

2.4 The experiential Route or "The Career Development Route"

The Experiential Route allows considering whether professional experiential learning can be recognised for career progression either from IWP diploma holders to IWS or IWS diploma holders to IWT courses who do not satisfy the relevant general access conditions. By this route, it is possible to run a career path from the welder through the IWP and IWS up to the IWT, more detailed information is given on items 3.2 and 3.3.

2.5 The Transition Route

The Transition Route is described in Section II, item 10.

2.6 Teaching hours

The meaning of the teaching hours is the following:

Standard Route:	minimum number of hours devoted to the subject
Alternative Route:	recommended number of hours devoted to the subject
Distance Learning:	recommended number of hours devoted to the subject
Part 1 (P1):	maximum number of hours devoted to the subject in Part 1
Part 3 (P3):	minimum or recommended number of hours devoted to the subject in Part 3

A "teaching hour" shall contain at least 50 minutes of direct teaching time.

3 General Access Conditions

In a separate document (Directory of Access Conditions, Doc. IAB-020-see latest edition) the defined access conditions approved by Group B "Implementation and Authorisation" of the IAB are given in detail for all countries participating in the IAB system. Applicants not fulfilling the access conditions may follow the course as guests, but entry to the related examination is not permitted.

The following general conditions shall be applied to all courses:

- 1. Students who have successfully passed the intermediate examination (Part 1) of the course are allowed to attend Part 2 and Part 3 of the course;
- 2. The implementation of the access conditions is the responsibility of the ANB.

In following parts of chapter 3 and in Special Requirements in chapter 4 of the guideline, diagrams are used for schematic illustration of the text. It should be noted that it is the text which is binding

3.1 International Welding Engineer IWE

It is agreed that entry to the program should be on a postgraduate level. Participants should have a primary degree in an engineering discipline or its equivalent recognised by the national government and assessed by the ANB. Therefore, it would be expected that participants should have at least a Bachelor degree at university level with a minimum study of 3 years, e.g.:

- a relevant qualification from an accredited program in accordance with the Washington Accord for professional qualification of engineers, or
- a First Cycle Bologna Framework engineering qualification, or
- an engineering qualification at EQF Level 6,
- or equivalent.

In case of co-operation arrangements, e.g. with universities, according to which the IWE Part 1 (IWE 1) of the syllabus with scope, objectives, and learning outcomes (see Section I) is presented under careful control of the ANB, the participant is allowed to enter the IWE course through the Path 2 (see item 2.1 and the diagram 1 below).

The following additional conditions shall be observed for the different routes through the IWE course:

- 1. Students who have authenticated evidence that they have passed the examinations in all subjects of their Bachelor engineering degree studies but still have to complete a thesis are allowed to attend Part 2 (IWE 2) and Part 3 (IWE 3) of the IWE course and the corresponding written parts of the final examination;
- 2. Students shall present their degree diploma to the Board of Examiners before being allowed to take the final oral examination for IWE.

Diagram 1: IWE-route

3.2 International Welding Technologist IWT

It is agreed that entry to the program via Path 1 and 2 should be on the basis of a higher technical education below that required for the International Welding Engineer. Participants should have a primary degree in an engineering discipline, e.g.:

- a relevant qualification from an accredited program in accordance with the Sydney Accord for professional qualification of engineering technologists, or
- a Short Cycle Bologna Framework engineering qualification, or
- an engineering qualification at EQF Level 5,
- or equivalent.

In case of co-operation arrangements, e.g. with technical colleges, according to which the IWT Part 1 of the curriculum structure (see <u>Section I</u>) is presented under careful control of the ANB, the participant is allowed to enter the IWT course through Path 2 (see item 2.1 and the diagram 2 below).

Applicants who have gained relevant industrial experience may take the Experiential Route to meet the General Access Conditions for IWT:

- CIWS with a minimum of two years' experience, post certification, as responsible for welding coordination for a welded product manufacturer working in full compliance with the Standard Quality Requirements of ISO 3834-3 or above or
- 2. Six years of experience working at Technologist level, after gaining the IWS diploma and within the preceding eight years.

All Experiential Route applicants will be required to attend the IWT Part 3 taught course and pass all Technologist level examinations to gain the IWT diploma

3.3 International Welding Specialist IWS

It is agreed that entry to the program through Path 1 and 2 should be on the basis of a specific technical education below that required for the International Welding Technologist but higher than a professional worker, e.g. a relevant qualification from an accredited program:

- in accordance with the Dublin Accord for the professional qualification of engineering technicians, or
- an engineering qualification at EQF Level 4,
- or equivalent.

In case of co-operation arrangements, e.g. with technical colleges, according to which the IWS Part 1 of the curriculum structure (see <u>Section I</u>) is presented under careful control of the ANB, the participant is allowed to enter the IWS course through Path 2 (see item 2.1 and the diagram 3 below).

Diagram 3: IWS-Route

The following additional conditions shall be observed for the different routes through the IWS course:

- 1. Path 1 and 2: a minimum of 2 years' job related experience is required;
- 2. Path 3: For the access to the module IWS Part 0 the minimum requirements are:
 - International Welding Practitioner (IWP) and minimum 2 years' experience (see on above diagram option 1) OR
 - Qualification of a professional worker (with diploma after examination) in metalworking professions at EQF Level 3, or equivalent and minimum 3 years' experience in welding related activities,
 - The education National definitions for a professional worker are given in the Directory of Access Conditions (see on above diagram 3, option 1).
- 3a. A qualified professional worker (as stated above) not fulfilling the IWS National Access Requirements should be allowed to go directly to the IWS Part 0 examination if they can prove that they have achieved the knowledge prescribed by the IWS Part 0 (see on above diagram 3, option 2).
- 3b. An IWP Diploma holder not fulfilling the IWS National Access Requirements should be allowed to go directly to the IWS Part 0 examination if they can prove that they have achieved the knowledge prescribed by the IWS Part 0 (see on above diagram option 2), if the applicant has success on this exam, he/she may skip the IWS Part 1 and only perform the IWS Part 1 intermediate exam. At the discretion of the ANB a partial or full exemption from Part 2 may be granted. (see diagram 3, option 2 and 4)

4. If the IWP Diploma holder fulfils the IWS National Access Requirements, he may skip the entry test (IWS Part 0 examination) and IWS Part 1 and only perform the IWS Part 1 intermediate exam (see on above diagram 3 option 3). At the discretion of the ANB a partial or full exemption from Part 2 may be granted.

3.4 International Welding Practitioner IWP

In order to enter the International Welding Practitioner course, participants are required to be skilled in practical welding and to have had experience as a welder in industry.

The course is intended to build theoretical knowledge and practical welding skills.

In case of co-operation arrangements, e.g. with technical colleges, according to which the IWP Part 1 of the curriculum structure (see <u>Section I</u>) is presented under careful control of the ANB, the participant is allowed to enter the IWP course through the Route 2 (see item 2.1 and the diagram 4 below).

The following standard access conditions are applicable to the IWP course. Applicants are required to

- 1. Hold a valid pipe welder qualification certificate in accordance with ISO 9606-1/-2 H-L045 ss nb or J-LO45 ss nb or the combination PC and PH ss nb in the same material group;
- Or
 - 2. Hold a valid plate welder qualification certificate in accordance with ISO 9606-1 for the conditions PE ss nb or PC and PF ss nb, or in accordance with ISO 9606-2 for the conditions PE bs or PC and PF bs;
- Or

3. Hold an alternative national welder qualification with the same range of qualification as that in 1 or 2 above; And

4. Have, a recommended minimum of, 2 years job-related experience as plate or pipe welder.

Diagram 4: IWP-Route

4 Special Requirements

4.1 Standard Route

Applicants (excluding guests) shall satisfy the ANB access conditions. If the ANB decides that the access conditions are adequately met, the applicants are then required to attend a training course conducted by an Approved Training Body (ATB) giving as a minimum the hours of instruction detailed in this Guideline as teaching hours. There will be written and oral examinations (where applicable) for the award of the applicable IIW Diploma.

The maximum number of hours of the lectures, which can be included in Part 1 are given in the table included in Chapter 1 above. The definition of the elements of the syllabus which are included in Part 1 is the responsibility of the ANB.

It is not obligatory to follow exactly the order of the topics given in this guideline and choice in the arrangement of the syllabus is permitted, with the exception that <u>training must conclude with Module 4</u> "Fabrication, applications engineering" in Part 3.

The depth to which each topic is dealt with is indicated by the number of hours allocated to it in the guideline. This will be reflected in the scope and depth of the examination.

The objectives of the education, training and examinations in terms of learning outcomes are described in two ways: generically for each level (see Introduction); and more specifically and in more detail under the heading of 'Expected Result' in each section of the Syllabus.

The rules for the conduct of the final examination by the ANB are prescribed under Examination and Qualification in this guideline (Section II).

4.2 Alternative Route

Applicants shall submit an application form to the ANB together with the appropriate documents indicated in the sub clauses 4.2.1, 4.2.2, 4.2.3 or 4.2.4 for a paper assessment.

The ANB shall check the documentation submitted to ensure the applicant meets the national Access Conditions (see doc IAB-020- latest edition). In addition, the ANB check should evaluate and verify the applicant's experience, training, education and practice of the job function in welding at the relevant qualification level. The result of this assessment shall determine if the applicant is suitable for further detailed assessment (Appendix III).

4.2.1 International Welding Engineer IWE

The applicant shall submit:

- > An application form
- > A copy of a diploma showing graduation in an engineering subject complying with the Access Conditions.
- > A curriculum vitae (CV) resume containing professional information:
 - evidence of at least 4 years' job function in welding at the level of an engineer (in a period of 6 years before application);
 - justification of candidate's experience, training, and education to become IWE (may include other test results).

Applicants who satisfy the Access Conditions AND already hold an IWT diploma should be considered under the Alternative Route

Diagram 5: Alternative versus Standard Routes for IWE qualification (see also Appendix III: Requirements for ANB Detailed Assessment)

4.2.2 International Welding Technologist IWT

The applicant shall submit:

- > An application form
- > A copy of a diploma showing graduation as technologist complying with the Access Conditions.
- > A curriculum vitae (CV) resume containing professional information:
 - evidence of at least 4 years' job function in welding at the level of a technologist (in a period of 6 years before application);
 - justification of candidate's experience, training, and education to become IWT (may include other test results).

Applicants who satisfy the Access Conditions AND already hold an IWS diploma should be considered under the Alternative Route.

Applicants who satisfy the Access Conditions AND hold an IWI-C diploma should be considered under the Alternative Route.

Diagram 6: Alternative versus Standard Routes for IWT qualification (see also Appendix III: Requirements for ANB Detailed Assessment)

4.2.3 International Welding Specialist IWS

The applicant shall submit:

- An application form
- > A copy of documentary proof showing compliance with the Access Conditions for IWS.
- > A curriculum vitae (CV) resume containing professional information:
 - evidence of at least 3 years' job function in welding at a level equivalent to that of a specialist (in a period of 6 years before application);
 - justification of candidate's experience, training, and education to become IWS (may include other test results).

Applicants who satisfy the Access Conditions AND hold an IWI-S diploma should be considered under the Alternative Route.

Applicants who do not satisfy the Access Conditions but who have a minimum of six years of experience in welding coordination and demonstrate to the ANB that their combination of education, training and experience in welding technology has provided a level of knowledge equivalent to the current IIW requirements should be considered under the Alternative Route.

Diagram 7: Alternative versus Standard Routes for IWS qualification (see also Appendix III: Requirements for ANB Detailed Assessment)

4.2.4 International Welding Practitioner IWP

The applicant shall submit

- An application form
- > A copy of a valid welder qualification certificate according with chapter 3.4 of the standard route.
- > A curriculum vitae (CV) resume containing professional information:
 - min. 3 years' job function in welding as a certified plate or tube welder in a period of 5 years before application plus
 - min. 1 year job function in welding practitioner level in a period of 3 years before application;
 - justification of candidate's experience, training, and education to become IWP (may include other test results).

Diagram 8: Alternative versus Standard Routes for IWP qualification (see also Appendix III: Requirements for ANB Detailed Assessment)

Section I: Theoretical and Practical Education – Part 1, Part 2 and Part 3, Syllabus and Performance Objectives

On the following pages it is presented the training syllabus for each module, each module syllabus of the training

Figures are teaching hours. Those after "P1=" are maximum teaching hours which can be included in Part 1

I.1. Theoretical Education - Part 1 and Part 3

Module 1: Welding processes and equipment

Characterization of the general description of Module 1 – Welding Processes and Equipment, describing the Qualification descriptors in terms of Knowledge – K, Skills – S, Competences - C for each IIW welding coordination qualification

COMPETENCE UNIT 1: WELDING PROCESSES AND EQUIPMENT										
QUALIFICATION	KNOWLEDGE	SKILLS	COMPETENCES	EQF LEVEL (EQF L)	TEACHING HOURS	WORKLOAD (WL)	ECVET POINTS			
INTERNATIONAL WELDING ENGINEER	Highly specialized knowledge (able to deduce, detail and explain) and critical assessment of the princi- ples of welding and cutting pro- cesses and applications, either man- ual or mechanized or automatic or robotized.	Highly specialised problem-solving skills including critical and original evaluation, allowing to define or develop the best technical and economical solutions when applying welding processes and related technologies, in complex and unpredicta- ble conditions.	Manage in detail the welding pro- cesses and cutting applications in a highly complex context. Act as the responsible person for the definition of the welding personnel tasks.	6	155	250	20			
INERNATIONAL WELDING TECHNOLOGIST	Advanced knowledge (able to deduce, detail and explain) and critical assessment of the princi- ples of welding and cutting pro- cesses and applications, either man- ual or mechanized or automatic or robotized.	Advanced problem-solving skills including critical evaluation, allowing to choose the proper technical and economical solutions when applying welding processes and re- lated technologies, in complex and unpre- dictable conditions.	Manage in detail the welding pro- cesses and cutting applications in a highly complex context. Act as the responsible person for the definition of the welding personnel tasks.	6	86	129	10			
INTERNATIONAL WELDING SPECIALIST	Specialized and factual knowledge (able to understand and identify) of the principles of welding and cutting processes and applications, either manual, mechanized, automatic or robotized.	Specialised range of cognitive and practi- cal skills, allowing to develop solutions or choose the appropriate methods when applying welding and related technologies in common/regular problems.	Manage and supervise the welding and cutting processes applications in unpredictable modifications. Act as the responsible person for su- pervise the welding personnel tasks	5	53	80	5			
INTERNATIONAL WELDING PRACTITIONER	Factual and theoretical knowledge (basic understand) of the principles of welding and cutting processes and applications, either manual, mechanized, automatic or robotized.	Range of cognitive and practical skills re- quired to identify/choose the proper tech- nical and economical solutions when ap- plying welding and cutting processes on basic and specific problems.	Self-manage the welding and cutting processes applications usually pre- dictable but subject to changes. Will act as the responsible person for supervise the welding personnel tasks	4	32	71	2,5			

IAB-252r4-18

Module 1: Welding processes and equipment

1.1 General introduction to welding technology				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	3	3	1	1
Scope:	P1	P1	P1	P1
History	Х	Х	-	-
General applications for welding	Х	Х	Х	Х
Schematic presentation of welding processes	Х	Х	Х	Х
Brief description with characteristics	Х	Х	-	-
Applicability of the most common welding processes	Х	Х	-	-
Abbreviations used for welding processes	Х	Х	Х	Х
Hints in use for welding processes	Х	Х	Х	Х
Welding positions and Terminology (ISO 6947, ISO 17659)	Х	Х	Х	Х
Symbolic representation of joints (overview)	Х	Х	Х	Х
Classification of welding processes (ISO, CEN and national standards)	Х	Х	Х	Х

	1.1 General introduction to welding technology – LEARNING OUTCOMES											
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL					
IWE & IWT	Apply advanced under- standing regarding the developments in welding processes including ac- cepted terminology, standards and abbrevia- tions	Demonstrate advanced knowledge and skills in describing in detail the welding processes and their range of application including been able to interpret standards re- lated to welding termi- nology	6	Explain the range of application of most com- mon welding processes providing real and tangible examples for each range of applica- tion Associate all welding processes to their com- mon abbreviation and identification code Associate the welding positions to their iden- tification codes Differentiate the weld joints types application	Justify in detail all the differ- ences between each major type of welding process (e.g. fusion arc, resistance, flame, forge, etc.), Explain in detail the applica- tion for each weld joint type	Appraise a given welded fab- rication case study, analyse its specific application and recommend the welding pro- cesses, welding positions and identify if needed alternative solutions	6					
IWS & IWP	Apply basic knowledge of the main factors of the different welding pro- cesses including termi- nology, standards and abbreviations	Demonstrate theoretical knowledge and practical skills, in pointing out the major differences be- tween each type of pro- cess and referring stand- ards related to welding terminology	4	Outline the range of application of most com- mon welding processes providing concrete examples for each range of application	Point out the most common differences between each main type of welding process (e.g. fusion arc, resistance, flame, forge, etc.), Differentiate the weld joints types application	Evaluate, under limited guid- ance, with limited autonomy a given welded fabrication case study, pointing out the possi- ble welding processes, weld- ing positions and types of weld joints	2					

	Associate the majority of welding processes to their common abbreviation and their identi- fication code		
	Associate the welding positions to their iden- tification codes		3
	Identify the application for each weld joint type		

1.2 Oxy-gas Welding and related processes				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	2	2	1	1
Scope:	P1	P1	P1	P1
Process principles	Х	Х	Х	Х
Range of Application	Х	Х	Х	Х
Types of Flames	Х	Х	Х	Х
Characteristics of fuel gases, (acetylene, propane, etc.)	Х	Х	-	-
Combustion reactions	Х	Х	-	-
Temperature distribution effects	Х	Х	-	-
Equipment	Х	Х	Х	Х
Methods of welding techniques, rightward, leftward	Х	Х	Х	Х
Standards for filler materials (at least for non-alloy steels)	Х	Х	-	-
Welding applications, typical problems and imperfections	Х	Х	Х	Х
Health and safety issues specific to the process	Х	Х	Х	Х

	1.2 Oxy-gas Welding and related processes – LEARNING OUTCOMES												
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL						
IWE & IWT	Apply advanced under- standing regarding the the fundamentals of oxy- gas combustion, charac- teristics of the different fuel gases, equipment, safety and typical appli- cation	Demonstrate advanced knowledge and skills in describing in detail the Oxy-gas application, se- lecting the consumables (using standards), types of flames, equipment, and how to prevent and solve application prob- lems	6	Describe in detail Oxy-gas welding and re- lated processes characteristics naming its scope of application Explain the features of the three flame types specifying the flames produced by the differ- ent fuel gases Characterise the Oxy-gas fuel gases, Flame combustion reactions and flame temperature distribution	Choose equipment for Oxy- gas welding referencing the purpose and working principle of each component of the equipment. Determine the potential haz- ards and methods of safe handling and working for Oxy- gas welding application.	Appraise a given welded fab- rication case study, analyse its specific application and recommend the Oxy-gas welding application conditions and identify, if needed, alter- native solutions.	4						

				Describe the welding techniques methods application	Define the welding filler mate- rial and gases requirements need for a certain application for this process using stand- ards for filler materials and gases.		
	Apply basic knowledge of the main factors of the fundamentals of	Demonstrate fundamen- tal knowledge and skills in outlining the Oxy-gas application, identifying		List all Oxy-gas welding and related pro- cesses characteristics naming its most com- mon scope of application Identify the features of the three flame types specifying the major characteristics of flames produced by the different fuel gases List the potential hazards and methods of	Choose equipment for Oxy- gas welding simple applica-	For a given welded fabrica- tion case, identify the ad- vantages and limitations as- sociated with the use of Oxy- gas welding and, under guid- ance, point out the possible	2
IWS & IWP	oxy-gas combustion, characteristics of differ- ent gases, equipment, safety and typical appli- cation	the consumables (using standards), types of flames, equipment, and basic solutions to pre- vent and solve applica- tion problems	4	safe handling and working for Oxy-gas weld- ing simple application Outline the requirements of application for this process using standards for filler materi- als Outline the welding filler material and gases requirements needed for a certain application for this process using standards for filler ma- terials and gases	tion referencing the purpose and working principle of the main components of the equipment.	tions Evaluate with a limited auton- omy a given welded fabrica- tion case study, and under guidance pointing out the possible Oxigas application conditions.	4

1.3 Electrotechnics				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	1	1	2	2
Scope:	P1	P1	P1	P1
Basics of electricity and electronics (define current, voltage and re-				
sistance)	-	-	Х	Х
Ohm's Law	-	-	Х	Х
Parallel and serial circuits	-	-	Х	Х
Direct current (DC), polarity, alternating current (AC)	-	-	Х	Х
Magnetism in welding	Х	Х	Х	-
Capacity, condenser, Inductance, inductors	Х	Х	Х	Х
Transformer, and rectifying bridge (half wave and full wave rectification)	Х	Х	Х	-
Transistor, thyristor,	Х	Х	Х	-
Hazard	Х	Х	Х	Х
Health and safety	Х	Х	Х	X

			1.3 I	Electrotechnics – LEARNING OUTC	OMES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE & IWT	Apply advanced under- standing regarding ba- sics of electricity in rela- tion to the requirements of welding technology and appreciate the key electronic components used in welding power sources	Demonstrate advanced knowledge and skills in combining all the func- tions of electric and elec- tronic components in welding power sources and defining the effect of current, voltage and electrical resistance in welding and understand in detail the influence of magnetism in welding.	6	Review the functions of the most important components of welding power sources applying electricity and electronics principles to weld- ing application Discuss the differences between DC and AC current using specific examples of welding application	Describe in detail and explain the effect of current, voltage and electri- cal resistance in welding. Interpret and apply knowledge re- garding electricity, electronics, mag- netism in welding application and power sources.	Appraise a given welded fabrica- tion case study, analysing its spe- cific application and discuss the application of type of current, and the effect of magnetism and the welding process electrical param- eters and identify if needed alter- native solutions.	2
IWS	Apply specialised under- standing regarding elec- tricity and the character- istics of the most im- portant electrical compo- nents used in electrical welding power sources	Demonstrate specialised knowledge and skills in relating the most im- portant functions of elec- tric and electronic com- ponents in welding power sources	5	Describe the relation between cur- rent, voltage and electrical re- sistance, defining each electrical parameter. Explain the major functions of the most important components of welding power sources	Discriminate DC and AC current, providing examples of its applica- tion to different welding processes Analyse and apply knowledge re- lated to electricity and electronics in welding application.	Appraise, with reduced direction, a given welded fabrication case study, analysing its specific appli- cation and discuss the application of type of current, and the effect of magnetism and the welding process electrical parameters and identify if needed alternative solu- tions	4
IWP	Apply basic knowledge of electricity and the characteristics of the	Demonstrate fundamen- tal knowledge and skills	4	Outline current, voltage and electri- cal resistance relating electrical pa- rameter with their international unit	Demonstrate and apply knowledge regarding electricity, electronics,	Evaluate with a limited autonomy a given welded fabrication case	6

	most important electrical components used in electrical welding power sources.	in relating the most im- portant functions of elec- tric and electronic com- ponents in welding power sources.	Describe the effect of current, volt- age and electrical resistance in welding. List-the major functions of the most important components of welding power sources.	magnetism in welding applications and power sources.	study, and under guidance point- ing out for a specific application the type of current, and the effect of magnetism and the welding pro- cess electrical parameters when using a specific welding process.	
			List the major differences between DC and AC current referenced in applications to different welding processes			

1.4 The arc				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	3	3	1	1
Scope:	P1	P1	P3	P3
Arc physics (producing an electric arc, the main arc areas, stability of the				
arc, gas ionization, ionization potentials, arc forces)	Х	Х	Х	Х
Voltage distribution across the arc	Х	Х	-	-
Heat generation at the cathode and anode	Х	Х	Х	Х
Polarity and arc characteristics in AC and DC and its control for the key				
welding processes	Х	Х	Х	Х
Influence on the welding process	Х	Х	Х	Х
Temperature distribution in the arc and effects	Х	Х	-	-
Influence of the magnetic fields on the arc (why, how to solve)	Х	Х	Х	Х
Limits of application	Х	Х	Х	Х

				1.4 The arc – LEARNING OUTCOMES			
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE & IWT	Apply advanced under- standing in detail the fun- damentals of an electric arc, its characteristics, limitations and applica- tion in welding, including arc stability problems	Demonstrate advanced knowledge and skills in formulating a critical ex- planation regarding the electric arc characteris- tics, type of current, and the influence of magnetic fields in electric arc, and proposing solutions for magnetic deflection prob- lems	6	 Explain in detail the fundamental physics of an electrical arc, including the main parameters influencing arc stability. Explain the fundamental physics used to define the arc characteristics, e.g. the plasma, temperature profiles, radiation and electrical features' as all arc welds contain these aspects Explain in depth the generation of heat in the arc and the arc voltage distribution. Explain in detail the arc characteristics for DC and AC including control and limitations 	Evaluate and diagnose arc welding stability problems, and give solutions for the problems encountered Design original and alternative solutions to magnetic deflec- tion problems	Influence arc welding imple- mentation with the goal to min- imise arc instability factors and arc blow Appraise the effect of thermi- onic emission during arc ini- tialisation, in addition to the type of magnetic flux being ei- ther self-induced or as a resid- ual contribution from the type of substrate used.	6
	Apply basic knowledge of an electric arc, its char-	Demonstrate fundamen- tal knowledge and skills in pointing out examples		Describe an electrical arc, naming its main ar- eas and their importance to welding and arc stability.	Determine solutions to solve simple arc welding instability problems	Under limited guidance, give assistance to welders and check welding implementation with the goal to minimise arc	2
IWS & IWP	acteristics, limitations and application in weld- ing	of the electric arc charac- teristics, type of current, and the magnetic fields in electric arc	4	Outline the variety of generation of heat in the arc. Summarise the variety of arc characteristics for DC and AC	Determine solutions to solve basic and simple magnetic de- flection problems	blow and instability factors, during arc welding Give assistance to welders and check with limited auton-	3

|--|

1.5 Power sources for arc welding				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	4	4	4	3
Scope:	P1	P1	P3	P3
Power source classification, types and characteristics				
(static and generators, and each sub-group)	Х	Х	Х	Х
Power source electrical characteristics (static and dynamic)	Х	Х	Х	Х
Relationship between static characteristic and welding process	Х	Х	Х	Х
Control of the electrical static characteristic (flat and drooping)	Х	Х	-	-
Arc stability for the main processes (MMA, TIG, MIG/MAG, SAW, PAW)	Х	Х	Х	Х
The operation working point	Х	Х	Х	Х
Inverter technology (overview, in terms of the most important blocks)	Х	Х	Х	-
Power sources controlled by a CPU	Х	Х	Х	-
Stability of processes in AC and DC	Х	Х	Х	-
AC (sine wave and square wave) and DC power sources	Х	Х	Х	Х
Open circuit voltage, short circuit current, power factor of transformers	Х	Х	Х	-
Duty cycle of a power source and typical values for the most common arc				
welding processes	Х	Х	Х	Х
Voltage losses, relationship between welding current value and cable sec-				
tion				
Current and voltage setting (electromagnetic and electronic devices)	Х	Х	Х	Х
Standards related with welding power sources and their requirements	Х	Х	-	-
	Х	Х	-	-

	1.5 Power sources for arc welding – LEARNING OUTCOMES									
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL			
IWE & IWT	Apply advanced under- standing regarding the characteristics and main components of arc weld- ing power sources	Demonstrate advanced knowledge and skills in differentiating static and dynamic characteristics for each type of power source and welding pro- cess and interpreting the	6	Describe in detail each type of welding power source, the specific static and dynamic electri- cal characteristics, operation point and control of arc stability.	Explain each type of arc weld- ing power source for both AC and DC, including the most common devices used Discuss the meaning of con- cepts such as: open circuit	Choose the most suitable power source for a certain arc welding application and/or en- vironment, and implement its correct use	8			

		various functions and switches on different power sources			voltage, short circuit current, duty cycle of a power source, voltage losses, and welding current to cable cross section relationship		
IWS	Apply basic knowledge of the main factors related with the components of arc welding power sources	Demonstrate specialised knowledge and skills been able to point out the most common appropri- ate power sources for a given welding process and the difference be- tween the static and dy- namic characteristics	5	Outline the various type of welding power source works (AC and DC), including the most common devices used. Outline for each type of arc welding power source the various static characteristic, oper- ation point and control of arc stability. Recognise the various settings and switches on different power sources and their major ef- fects on the welding process	Give Examples about the meaning of concepts such as: open circuit voltage, arc volt- age short circuit current, duty cycle of a power source, volt- age losses, and current to ca- ble section relationship Make use of the appropriate power sources for a given welding process.	Check if the welders are using the proper power source for a certain arc welding application and their correct use	6
IWP	Apply basic knowledge of the need of components of arc welding power sources.	Demonstrate fundamen- tal knowledge and skills differentiating the most common appropriate power sources for a given welding process the application and the difference between the static and dynamic char- acteristics	4	Outline how each type of welding power source works (AC and DC) including the most common devices used. List the most important power source electrical characteristics, such as: open circuit voltage, arc voltage short circuit current, duty cycle of a power source, voltage losses, and current to cable section relationship. Relate the various settings and switches on different power sources and their effects.	Make use of the appropriate power sources for a given welding process.	Check with limited autonomy if the welders are using the proper power source for a cer- tain arc welding application and their correct use	4

1.6 Introduction to gas shielded arc welding								
Objective for IWE and IWT: Understand in detail the principles and physical phenomena of gas shielded welding processes.								
Objective for IWS and IWP: Gain basic knowledge about the principles of cesses.	gas shi	elded we	elding pi	°0-				
Qualification	IWE	IWT	IWS	IWP				
Teaching hours	2	2	1	1				
Scope:	P1	P1	P1	P1				
Physical phenomena	Х	Х	Х	Х				
Shielding gases (inert, active) and their effect on arc characteristics	Х	Х	Х	Х				
Handling and storage of gases (overview)	Х	Х	Х	Х				
Influence of the welding parameters on the weld bead morphology	Х	Х	Х	Х				
Standards (ISO, CEN and National) for shielding gases	Х	X	Х	Х				

	1.6 Introduction to gas shielded arc welding – LEARNING OUTCOMES									
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL			
IWE & IWT	Apply advanced under- standing in detail the principles and physical phenomena of gas shielded welding pro- cesses	Demonstrate advanced knowledge and skills in relating the applicable arc characteristics with types of shielding gas used for each process and be able to interpret- ing standards for shield- ing gases and filler mate- rials	6	Explain in detail the characteristics and oper- ating principles of TIG, MIG/MAG and Flux- cored welding Interpret arc characteristics associated with each type of shielding gas used for each pro- cess Interpret the handling and storage require- ments of consumables and gases including the safety factors related to handling and stor- age	Make use of standards for shielding gases and filler ma- terials. Determine the methods for safe handling and storage of shielding gases. Predict the weld bead mor- phology as a function of the welding parameters and gases used in arc welding	Appraise a given welded fabri- cation case study, analyse its specific application and rec- ommend the type of gas shielding that should be used and identify if needed alterna- tive solutions Manage and supervise the handling and storage of con- sumables Manage and assess the activ- ities regarding the choice of gases and filler materials for arc welding processes using shield gases	4			
IWS & IWP	Apply basic knowledge about the principles of gas shielded welding processes.	Demonstrate theoretical knowledge and practical skills, in pointing out the major arc characteristics for each type of shielding gas used for each pro- cess and be able to use the standards for shield- ing gases and filler mate- rials	4	Outline the characteristics and operating prin- ciples of TIG, MIG/MAG and Flux-cored weld- ing. List arc characteristics associated with each type of shielding gas used for each process. Indicate the major methods for safe handling and storage of shielding gases	Make use of standards for shielding gases and filler ma- terials. Apply the methods for safe handling and storage of shielding gases. Control the weld bead mor- phology as a function of the welding parameters and gases used in arc welding	Evaluate with limited auton- omy, the handling and storage of consumables Verify and check, Evaluate with limited autonomy, the ac- tivities regarding the imple- mentation of gases and filler materials for arc welding pro- cesses using shied gases For a given material type, ap- ply appropriate international standards requirements to re- quest gas shielding, denoting the chemistry, specification and classification	2			

Qualification	IWE	IWT	IWS	IWP
Teaching hours	5	5	3	2
Scope:	P1	P1	P1	P1
Power source characteristics	Х	Х	Х	Х
Methods for arc ignition and necessary equipment	Х	Х	Х	Х
Equipment and accessories: torches, gas lens, control panel, up and down				
slope,	Х	Х	Х	Х
Effect of current type and polarity: DC(+), DC(-) and AC	Х	Х	-	-
Specific requirements for different materials, e.g. Al	Х	Х	Х	-
Consumables: shielding gases, filler materials, electrodes	Х	Х	Х	Х
Welding parameters: current, voltage, travel speed, gas flow rate	Х	Х	Х	Х
Joint preparation: typical joint design for welding, fit-up, cleaning	Х	Х	Х	Х
Special techniques: pulsed arc, spot-welding, key-hole, hot-wire, orbital				
welding, tube to tube and tube to sheet, narrow gap and oth-				
ers	Х	Х	Х	-
Standards for filler materials, and electrodes (at least for non-alloy steels).	Х	Х	Х	Х
Welding applications, typical problems and how to solve them	Х	Х	Х	Х
Health and safety issues specific to the process	Х	Х	Х	Х

			1.	7 TIG Welding – LEARNING OUTCOMES			
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE & IWT	Apply advanced under- standing in detail TIG welding fundamentals, including equipment, ap- plication, main variables, safety and specific prob- lems.	Demonstrate advanced knowledge and skills in detailing the range of TIG welding application, in- cluding the influence of the welding parameters on the weld bead and all potential problems, pro- posing a coherent and struc- tured solution for over- coming each identified problem, being able also to interpret standards for filler materials, including the selecting of the type of current, polarity,	6	 Explain in detail the principles of TIG welding including arc ignition methods and their application. Discuss the selection of the appropriate type of current, polarity, shielding gas and electrode type according to application. Explain the purpose and functions of each component of the equipment and accessories. Explain all the potential hazards and methods of safe handling and working. Describe the various settings and switches on different TIG power sources and their effects on the welding process 	Make use of standards for filler materials Determine the range of appli- cation, appropriate joint prep- arations, electrode type and potential problems to be over- come in TIG application Deduce welding parameters for TIG application Detail the methods of safe handling and working	Appraise a given welded fabri- cation case study, analyse its specific application and rec- ommend the TIG welding pro- cess variables and application conditions and identify if needed alternative solutions Manage and assess the activ- ities regarding the choice of gases, electrodes and filler materials for TIG welding pro- cess application Manage and supervise the handling and storage of con- sumables	10

			1				1
		shielding gas and elec- trode type according to the application		Describe the effects of different electrode choices associated with dopants, thermionic emission and correct tip shapes. Define ap- propriate gas cups and the use of gas lenses		Apply appropriate interna- tional standards requirements to specify the correct elec- trode classification for a partic- ular material, polarity and cur- rent.	
IWS	Apply basic knowledge of the TIG welding funda- mentals, equipment, ap- plication, main variables, safety and specific prob- lems	Demonstrate specialised knowledge and skills be- ing able to identify the ap- propriate type of current, polarity, shielding gas and electrode according to their application, giving correct examples of the welding parameters and using standards for filler materials	5	Describe the major principles of TIG welding including arc ignition methods and their appli- cation. Indicate the range of application, appropriate joint preparations and potential problems to be overcome. Outline the purpose and functions of each component of the equipment and accessories. Indicate the potential hazards and methods of safe handling, storage and working practices. Define the appropriate electrode type, size and correct tip shapes for a particular applica- tion. Define appropriate gas cups and the use of gas lenses	Select the appropriate type of current, polarity, shielding gas and electrode type, according to a given application. Establish the welding parame- ters application. Apply methods of safe han- dling and working	Evaluate with a limited auton- omy a given welded fabrica- tion case study, and under guidance point out the TIG welding process variables and application conditions Verify and check the activities regarding the choice of gases and filler materials for TIG welding processes Verify the handling and stor- age of consumables Using appropriate interna- tional standards, identify the correct electrode for a particu- lar material, polarity and cur- rent	6
IWP	Apply basic knowledge of the TIG welding fun- damentals, equipment, applications, main varia- bles, safety and specific problem.	Demonstrate a funda- mental knowledge and skills in identifying the correct type of current, polarity, shielding gas and electrode according to their application, giv- ing correct examples of the welding parameters proper applications and using standards for filler materials	4	List TIG welding including arc ignition meth- ods and their most common applications. Outline a given standards for consumables. List potential hazards and methods of safe handling and working	Choose the most common applications for each type of current, polarity and electrode Type. Choose the most important applications related with TIG Welding and the appropriate values for welding parame- ters. Make use and care for TIG welding equipment and ac- cessories. Illustrate with examples TIG applications, joint preparation and potential problems to overcome. Check the activities regarding the implementation TIG Weld- ing processes	Evaluate with a limited auton- omy a given welded fabrica- tion case study, and under guidance pointing out the TIG welding process variables and application conditions Evaluate with limited auton- omy the handling and storage of consumables	6

Apply methods for safe han-	
dling and working.	

1.8.1 MIG/MAG				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	8	8	6	6
Scope:	P1	P1	P1	P1
Power source characteristics for conventional process and CPU controlled				
power sources	Х	Х	Х	Х
Effect of current type and polarity	Х	Х	-	-
Equipment and accessories: torches, wire feeders, hose assembly, control				
panel	Х	Х	Х	Х
Metal transfer modes (dip, globular, spray, pulsed and rotating), controlled				
transfer mode and their application	Х	Х	Х	Х
Welding parameters and settings: current, voltage, travel speed, gas flow				
rate, etc	Х	Х	Х	Х
Consumables: shielding gases, filler materials (solid wires), and their com-				
binations	Х	Х	Х	Х
Joint preparation: fit-up, cleaning	Х	Х	Х	Х
Special techniques: electro-gas welding, high efficiency processes, spot				
welding, single wire and multiple wire techniques, flat wire, brazing, elec-				
tronic stability control (arc and wire feed), etc	Х	Х	Х	-
Standards for filler materials (at least for non-alloy steels)	Х	Х	Х	Х
Welding applications, typical problems and how to solve them	Х	Х	Х	Х
Health and safety specific to the process	Х	Х	Х	Х

			1.	8.1 MIG/MAG – LEARNING OUTCOMES			
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE & IWT	Apply advanced under- standing in detail MIG/MAG welding funda- mentals, including equip- ment, application, main variables, and common problems	Demonstrate advanced knowledge and skills in detailing the range of MIG/MAG welding appli- cation including the influ- ence of the welding pa- rameters on the weld bead and mode of trans- fer and all potential prob- lems, proposing	6	Explain the principles of MIG/MAG welding in- cluding metal transfer modes and their appli- cation. Explain the selection of the appropriate type of current, polarity and electrode according to application. Review the influence of the welding parame- ters on the weld bead	Determine the range of appli- cation, appropriate joint prep- arations and potential prob- lems to be overcome Define potential hazards and determine the methods of safe handling and working Make use of standards	Appraise a given welded fabri- cation case study, analyse its specific application and rec- ommend the MIG/MAG weld- ing process variables and ap- plication conditions and iden- tify if needed alternative solu- tions	16

		a coherent and struc- tured solution for over- coming each identified problem, being able also to interpret standards for filler materials, including the selecting of the type of current, polarity, shielding gas and elec- trode type according to the application		Explain the functions of each component of the equipment and accessories. Explain all potential hazards and methods of safe handling and working. Interpret all the appropriate standards con- sumables	consumables selection Assess the various settings and switches on different MIG/MAG power sources and their effects on the welding process. Deduce welding parameters for particular application. Detail the methods of safe handling and working	Select gases, electrode/filler diameter, current and materi- als for MIG/MAG welding pro- cesses for the type of metal mode transfer. Apply appropriate interna- tional standards requirements to identify the correct elec- trode for a particular material, polarity and current Manage and supervise the handling and storage of con-	
				Outline the major principles of MIG/MAG weld-		sumables	
IWS &IWP	Apply basic knowledge of the MIG/MAG fundamen- tals, including equip- ment, application, main variables, safety and common problems	Demonstrate fundamen- tal knowledge and skills, n identifying the appropriate type of shielding gas and elec- trode according to their application, giving cor- rect examples of the welding parameters and using standards for filler materials	4	 Indicate the influence of the welding parameters for particular application. List the appropriate type of shielding gas and electrode type, according to a given application. Indicate MIG/MAG range of application, appropriate joint preparations and potential problems to be overcome. Recognise the influence of the welding parameters on the weld bead and be able to define the welding parameters for particular applications. Indicate the potential hazards and methods of safe handling, storage and working practices. List the various functions of the main components of the equipment and accessories. 	Illustrate with examples how to select the proper consuma- bles for MIG/MAG welding. Apply methods of safe han- dling and working Make use of appropriate standards for MIG/MAG con- sumables. Verify the activities regarding the choice of gases and mate- rials for MIG/MAG welding processes Make use and maintain MIG/MAG welding equipment and accessories.	Evaluate with a limited auton- omy a given welded fabrica- tion case study, and under guidance point out the MIG/MAG welding process variables and application con- ditions Evaluate with limited auton- omy the handling and storage of consumables	12

1.8.2 Flux Cored Arc Welding				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	2	2	2	2
Scope:	P1	P1	P1	P1
Power source characteristics for conventional process and CPU controlled				
power sources (only the specific aspects for FCAW)	Х	Х	Х	Х
Effect of current type and polarity	Х	Х	-	-
Equipment and accessories: torches, wire feeders	Х	Х	Х	Х
Relation between the consumables and the type of Metal transfer mode,				
and their applications	Х	Х	Х	Х
Welding parameters and settings: current, voltage, travel speed, gas flow				
rate, etc	Х	Х	Х	Х
Consumables: shielding gases, filler materials (flux cored wires), and their				
combinations	Х	Х	Х	Х
Joint preparation: fit-up, cleaning	Х	Х	Х	Х
Standards for filler materials (at least for non-alloy steels)	Х	Х	Х	Х
Welding applications, typical problems and how to solve them	Х	Х	Х	Х
Health and safety specific to the process	Х	Х	Х	Х

		1	.8.2 Flux	x Cored Arc Welding – LEARNING OUTCOME	S		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE & IWT	Apply advanced under- standing in detail FCAW welding fundamentals, including equipment, ap- plication, main variables, and common problems	Demonstrate advanced knowledge and skills in detailing the range of FCAW welding applica- tion including the influ- ence of the welding pa- rameters on the weld bead and node of trans- fer and all potential prob- lems, proposing a coherent and struc- tured solution for over- coming each identified problem, being able also to interpret standards for filler materials, including the selecting of the type of polarity, polarity,	6	Explain the principles of Flux Cored Arc Weld- ing including its application. Explain the selection of the appropriate type of polarity and electrode according to applica- tion. Review the influence of the welding parame- ters on the weld bead Explain all potential hazards and methods of safe handling and working. Explain the functions of each component of the equipment and accessories. Interpret all the appropriate standards con- sumables	Determine the range of appli- cation, appropriate joint prep- arations and present potential problems to be overcome. Define potential hazards and determine the methods of safe handling and working Assess the various settings and switches on different Flux Cored Arc Welding power sources and their effects on the welding process Make use of standards for consumables Deduce welding parameters for particular application.	Appraise a given welded fabri- cation case study, analyse its specific application and rec- ommend the FCAW welding process variables and applica- tion conditions and identify if needed alternative solutions Select correct gases and/or electrode-flux classification and diameter, current and ma- terials for FCAW process in consideration of the type of metal mode transfer. Manage and supervise the handling and storage of con- sumables	4

								_
		shielding gas and elec- trode type according to the application						
IWS & IWP	Apply basic knowledge of the FCAW fundamentals, including equipment, ap- plication, main variables, safety and common problems	Demonstrate fundamen- tal knowledge and skills in identifying the appropriate type of shielding gas and elec- trode according to their application, giving exam- ples of the welding pa- rameters and using standards for filler mate- rials	4	Outline the principles of Flux Cored Arc Weld- ing including their most common applications. List the appropriate type of shielding gas and electrode type, according to a given applica- tion. Indicate FCAW range of application, appropri- ate joint preparations and potential problems to be overcome. Recognise the influence of the welding param- eters on the weld bead and be able to define the welding parameters for particular applica- tions. Indicate the potential hazards and simple methods of safe handling, storage and work- ing practices. Outline the various functions of the main com- ponents of the equipment and accessories	Illustrate with examples how to select the proper consuma- bles for FCAW Welding. Verify the activities regarding the choice of gases and mate- rials for FCAW Apply methods of safe han- dling and working. Use of appropriate standards for FCAW consumables. Make use and care for FCAW welding equipment and acces- sories.	Evaluate with a limited auton- omy a given welded fabrica- tion case study, and under guidance point out the FCAW process variables and applica- tion conditions Evaluate with limited auton- omy the handling and storage of consumables Under limited guidance, select the appropriate gases and/or electrode-flux classification and diameter, current and ma- terials for the FCAW process on the type of metal mode transfer	4	

Qualification	IWE	IWT	IWS	IWP
Teaching hours	6	6	4	4
Scope:	P1	P1	P1	P1
Process principles and arc characteristics	Х	Х	Х	Х
Effect of current type and polarity	Х	Х	Х	Х
Power source characteristics applicable to MMA (open circuit voltage,				
static and dynamic characteristics, types of current, arc striking methods).	Х	Х	Х	Х
Equipment and accessories	Х	Х	Х	Х
Process application range, typical problems and how to solve them	Х	Х	Х	Х
Covered electrodes (functions of the coating and rod, types of electrodes,				
slag-metal and gas-metal covered reactions)	Х	Х	Х	Х
Production of electrodes (how, typical defects)	Х	Х	-	-
Handling and storage of electrodes (storage environment, redrying)	Х	Х	Х	Х
Standards for filler materials (at least for non-alloy steels)	Х	Х	Х	Х
Selection of covered electrodes for their applications	Х	Х	Х	Х
Welding parameters: current, voltage, run out length, etc	Х	Х	Х	Х
Joint preparation: fit-up, cleaning, welding position	Х	Х	Х	Х
Relationship between electrode diameter and current range, rod material,				
electrode length and welding position	Х	Х	Х	Х
Special techniques (gravity welding, etc.)	Х	Х	Х	Х
Health and safety specific to the MMA process	Х	Х	Х	Х

1.9 MMA Welding – LEARNING OUTCOMES							
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE & IWT	Apply advanced under- standing in detail MMA welding fundamentals, including equipment, ap- plication, main variables, and common problems	Demonstrate advanced knowledge and skills in detailing the range of MMA welding application including the influence of the welding parameters on the weld bead and all potential problems, pro- posing a coherent and struc- tured solution for over- coming each identified problem, being able also to interpret standards for	6	Explain the principles of MMA welding includ- ing special techniques, arc striking methods and their application. Explain all potential hazards and methods of safe handling and working. Explain the purpose and functions of each component of the equipment and accessories. Review the handling and storage require- ments of the various types of electrodes. Interpret all the appropriate standards	Determine the range of appli- cation, appropriate joint prep- arations and potential prob- lems to be overcome Deduce welding parameters for specific application Assess the various settings and switches on different MMA power sources and their effects on the welding process	Appraise a given welded fabri- cation case study, analyse its specific application and rec- ommend the MMA welding process variables and applica- tion conditions and identify if needed alternative solutions Select correct electrode-flux classification and diameter, current and materials for the MMA process in consideration of the type of material being welding and the welding atti- tude (position).	12

		filler materials, including the selecting of the type of current, polarity, and electrode type according to the application		Review the influence of electrode coating on droplet transfer and weld metal properties	Define potential hazards and determine the methods of safe handling and working Make use of standards consumables selection Deduce welding parameters for particular application.	Manage and supervise the handling and storage of consumables	
IWS & IWP	Apply basic knowledge of the MMA fundamentals, including equipment, ap- plication, main variables, safety and common problems	Demonstrate fundamen- tal knowledge and skills, in selecting the type of current, polar- ity and electrode accord- ing to their application, giving examples of the common and appropriate welding parameters for particular application and using standards for filler materials	4	Identify the most common principles of MMA welding Indicate MMA range of application, appropri- ate joint preparations and potential problems to be overcome. List the potential hazards and methods of safe handling and working. Outline the various functions of each compo- nent of the equipment and accessories. Describe the appropriate methods of handling, control and storage of the various types of electrodes. Outline the influence of electrode coating on droplet transfer and weld metal properties	Choose the appropriate type of current, polarity and elec- trode, according to a given ap- plication. Make use of appropriate standards for MMA consuma- bles. Apply methods of safe han- dling and working Verify the choice of electrode- flux classification and diame- ter, current and materials for the MMA process in consider- ation of the type of material being welding and the welding attitude (position).	Evaluate with a limited auton- omy a given welded fabrica- tion case study, and under guidance point out the MMA welding process variables and application conditions Evaluate with limited auton- omy the handling and storage of consumables	8

Qualification	IWE	IWT	IWS	IWP
Teaching hours	6	6	4	4
Scope:	P1	P1	P3	P3
SAW process principles and arc characteristics	Х	Х	Х	Х
Effect of current type and polarity	Х	Х	-	-
Power source characteristics applicable to SAW (open circuit voltage, static				
and dynamic characteristics, types of current, arc striking methods)				
Equipment and accessories	Х	Х	Х	Х
Process application range, typical problems and how to solve them	Х	Х	Х	Х
Consumables (functions of the flux and wire -solid or flux cored-, types of				
flux and wire, wire-flux combination, slag-metal and gas-metal reactions).	Х	Х	Х	Х
Production of consumables (how, typical defects)	Х	Х	Х	Х
Handling and storage of consumables (storage environment, re-drying)	Х	Х	Х	Х
Standards for filler materials wires and fluxes (at least for non-alloy				
steels)	Х	Х	Х	Х
Welding parameters: current, voltage, travel speed, type of flux and particle				
size, stick-out, etc	Х	Х	Х	Х
Joint preparation: fit-up, cleaning	Х	Х	Х	Х
Relationship between the wire-flux combination and the characteristics of				
deposited material	Х	Х	Х	Х
One side welding including backing methods	Х	Х	-	-
Single-wire and multi -wire techniques	Х	Х	Х	Х
Special techniques (strip-cladding, iron-powder addition, cold and hot wire				
addition)	Х	Х	-	-
Health and safety specific to SAW process	Х	Х	Х	Х

	1.10 Submerged-Arc Welding – LEARNING OUTCOMES									
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL			
IWE & IWT	Apply advanced under- standing in detail SAW welding fundamentals, including equipment, application, main varia- bles, and common prob- lems	Demonstrate advanced knowledge and skills in detailing the range of SAW welding application including the influence of the welding parameters on the weld bead and all potential problems, pro- posing	6	Explain the principles of SAW process includ- ing arc striking methods, special techniques and their application. Review the range of application, appropriate joint preparations and potential problems to be overcome Explain the purpose and functions of each component of the equipment and accessories.	Define the selection of appro- priate type of current, polarity and consumable according to application. Deduce welding parameters for particular applications.	Appraise a given welded fabri- cation case study, analyse its specific application and rec- ommend the SAW welding process variables and applica- tion conditions and identify if needed alternative solutions	12			

		a coherent and structured solution for overcoming each identified problem, been able also to inter- preting		Interpret all the appropriate standards and welding procedures. Explain all potential hazards and methods of safe handling and working. Explaining the influence of the slag-metal and gas-metal reactions on weld metal properties, justifying all the influencing factors and their particular effects;	Define potential hazards and determine the methods of safe handling and working Assess the various settings and switches on different SAW power sources to main- tain processing continuity and consistency. Make use of standards con- sumables selection	Select flux-wire classification and materials used for Sub- merged-Arc Welding. Manage and supervise the handling and storage of con- sumables	
IWS & IWP	Apply basic knowledge of the SAW fundamen- tals, including equip- ment, application, main variables, safety and common problems	Demonstrate fundamental knowledge and skills in identifying the appropriate type of shielding gas and elec- trode according to their application, giving exam- ples of the welding param- eters and using standards for filler materials	4	Outline the principles of the SAW process In- cluding arc striking methods and their applica- tions. Outline the appropriate electrode-flux classifi- cation for a particular application Outline the criteria for evaluating the applica- ble welding parameters. Indicate SAW range of application, joint edge preparation and potential problems to be over- come. Describe the procedures for the set-up of power sources. Recognise the criteria for selecting flux-wire combinations. Identify potential hazards and methods of safe handling and working	Illustrate how to select the proper consumables for SAW Welding. Make use of appropriate standards for SAW consuma- bles. Verify the activities regarding the choice of flux-wire classifi- cation and materials for Sub- merged-Arc Welding Apply methods of safe han- dling and working	Evaluate with a limited auton- omy a given welded fabrica- tion case study, and under guidance point out the SAW welding process variables and application conditions Evaluate with limited auton- omy the handling and storage of consumables	8

Qualification	IWE	IWT	IWS	IWP
Teaching hours	6	6	3	0
Scope:	P3	P3	P3	-
Process principles and overview on types of processes (spot, projection,				
butt, seam, and flash)	Х	Х	Х	-
Joule effect and temperature distribution	Х	Х	Х	-
Equipment and accessories	Х	Х	Х	-
Process application range and typical problems (welding thin to thick ma-				
terial, welding of coated/ painted materials, welding dissimilar materials,				
mass effect, shunt effect, Peltier effect, resistance braz-				
ing)	Х	Х	Х	-
Electrodes (functions, types, shapes, material)	Х	Х	Х	-
Electrode classification (ISO, CEN and National standards)	Х	Х	-	-
Welding parameters: current, pressure, time, type of current, pulse, etc	Х	Х	Х	-
Joint preparation: typical joint design for welding, fit-up, cleaning	Х	Х	Х	-
Relationship between welding parameters and the characteristics of the				
weld nugget	Х	Х	Х	-
Monitoring systems, process control, measuring	Х	Х	-	-
Specific testing	Х	Х	-	-
Health and safety specific to the resistance welding process	Х	Х	Х	-

	1.11 Resistance Welding – EARNING OUTCOMES										
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL				
IWE & IWT	Apply advanced under- standing in detail re- sistance welding funda- mentals, including equipment, application, main variables, safety, common problems and their solution	Demonstrate advanced knowledge and skills in detailing the range of Re- sistance Welding applica- tions, appropriate joint preparations and all po- tential problems, propos- ing structured solutions for overcoming identified problems, been able also to interpreting related standards;	6	Explain the principles of resistance welding and the application of the various sub-pro- cesses. Review the range of application, appropriate material preparation and potential problems to be overcome Explain the purpose and functions of each component of the equipment and accessories. Interpret all the appropriate standards. Explain all potential hazards and methods of safe handling and working.	Define a selection of appropri- ate parameters to give sound welds Deduce welding parameters for resistance welding applica- tions Define the various settings and conclude about their effects on the welding process Define potential hazards and determine the methods of safe handling and working	Appraise a given welded fabri- cation case study, analyse its specific application and rec- ommend those Resistance welding process variables and application conditions to pro- duce an acceptable weld- ment. Select parameter modifica- tions to provide alternative so- lutions Manage and assess the activ- ities regarding the parameters	12				

				Identify the key variables and their interde- pendencies in producing a weld nugget.	Make use of standards	and settings for resistance welding	
						Select particular electrode materials for a range of appli- cations, with consideration for contact area and profile	
IWS	Apply basic knowledge of the resistance weld- ing fundamentals, in- cluding equipment, ap- plication, main varia- bles, safety and com- mon problems.	Demonstrate specialised knowledge and skills been able to identify the appropriate range of Resistance Welding appli- cation, appropriate joint preparations and the most common problems	5	Outline the principles of the resistance welding process and the application of the various sub processes. Outline the criteria for the selection of the cor- rect pressure and current cycles. Describe the influence of the surface charac- teristics on the final quality of the joints and the causes of the common discontinuities and their prevention. Indicate welding instructions for welders and operators. Recognise potential hazards and methods of safe handling and working.	Identify the appropriate pa- rameters to give sound welds List the various settings and their effects on the welding process Make use of standards Apply methods of safe han- dling and working	Evaluate with a limited auton- omy a given welded fabrica- tion case study, and under guidance point out the Re- sistance welding process vari- ables and application condi- tions Under limited guidance, verify the parameters and settings of resistance welding	6
IWP				NOT APPLICABLE			

1.12.1– Laser; Electron Beam; Plasma				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	8	5	2	1
Scope:	P3	P3	P3	P3
Basic principle of plasma and plasma-MIG welding process and equipment				
	Х	Х	Х	-
Basic principle of electron beam welding process and equipment)	Х	Х	Х	-
Basic principle of laser welding process and equipment	Х	Х	Х	-
Basic principle of laser- hybrid welding process and equipment	Х	Х	-	-
Heat generation for each type of process	Х	Х	Х	Х
Typical process applications and problems	Х	Х	Х	-
Consumables	Х	Х	Х	Х
Welding parameters for each process	Х	Х	Х	-
Joint preparation: typical joint design for welding, fit-up, cleaning	Х	Х	-	-
Relationship between welding parameters and joint configuration	Х	Х	-	-
Comparison between high energy processes	Х	Х	Х	Х
Health and safety specific to the processes	Х	Х	Х	Х
Appropriate standards (ISO, CEN and National) for each process	Х	Х	Х	-
Plasma Weldingfor IWE 2 hours				
Plasma Weldingfor IWT 1 hour				

		1.12.1 Other Weldin	ng Proce	esses – Laser; Electron Beam; Plasma – LEA	RNING OUTCOMES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE	To apply a highly spe- cialised understanding of those requirements, functions and principles involving plasma; elec- tron beam Laser weld- ing and the fundamen- tals of each process, in- cluding equipment, ap- plication, main varia- bles, safety and com- mon problems.	Demonstrate highly spe- cialised knowledge and skills in selecting each type of process according to their application and de- tailing the welding param- eters, joint preparations applicable for Laser; Elec- tron Beam and Plasma welding processes, pro- posing structured solu- tions for overcoming each identified problem	7	Explain the principles and application of weld- ing processes, such as: Laser, Electron Beam and Plasma. Describe the purpose and functions of each component of the equipment and accessories. Interpret all the appropriate standards. Explain the purpose and merit of hybrid weld- ing from both sides of laser welding and arc welding	Deduce applications and welding parameters for each type of process, Review the welding parame- ters, appropriate joint prepara- tions and potential problems to be overcome for each pro- cess for a given application Define potential hazards and determine the methods of safe handling and working Apply standards associated with consumables selection, testing and processing varia- bles.	Appraise a given welded fabri- cation case study, analyse its specific application and rec- ommend the plasma or elec- tron beam or Laser welding processes variables and appli- cation conditions and identify if needed alternative solutions	16

IWT	Apply advanced under- standing of the princi- ples and the fields of ap- plication of plasma; electron beam; Laser welding and the funda- mentals of each pro- cess, including equip- ment, application, main variables, safety and common problems.	Demonstrate advanced knowledge and skills in selecting each type of pro- cess according to their ap- plication and Identifying the welding parameters, appropriate joint prepara- tions and the major poten- tial problems related to Laser; Electron Beam and Plasma welding pro- cesses to be overcome.	6	Explain the principles and application of weld- ing processes, such as: Laser, Electron Beam and Plasma. Explain the purpose and functions of each component of the equipment and accessories. Interpret the appropriate standards. Describe the major potential hazards and methods of safe handling and working	Review the welding parame- ters, appropriate joint prepara- tions and potential problems to be overcome for each process for a given application. Make use of standards con- sumables selection	Appraise a given welded fabri- cation case study, analyse its specific application and rec- ommend the plasma or elec- tron beam or Laser welding processes variables and appli- cation conditions and identify if needed alternative solutions	10
IWS	Apply basic understand- ing of the requirements and gain basic knowledge of Plasma; Electron Beam; Laser, their application, main variables and most com- mon problems.	Demonstrate specialised knowledge and skills in identifying the appropriate process and equipment according to a given appli- cation and be able to list the welding parameters, appropriate joint preparations han- dling and working	5	Describe the principles and application of welding processes, such as: Laser, Electron Beam and Plasma. Outline the common applications of the pro- cesses in the different industrial fields. Recognise potential hazards and methods of safe handling and working.	Indicate for each process, the suitable welding parameters. Apply methods of safe han- dling and working	Appraise a given welded fabri- cation case study, analyse its specific application and recog- nise Laser, electron beam and plasma application and list the major welding parameters	4
IWP	Apply basic knowledge of Plasma; Electron Beam; Laser, their ap- plication, main variables and most common problems.	Demonstrate a funda- mental knowledge and skills in identifying the ap- propriate processes and equipment according to a given application.	4	Identify potential hazards and methods of safe handling and working.	Illustrate with examples typi- cal applications of Laser, Electron Beam and Plasma welding processes. Carry out and maintain basic equipment and accessories for the different welding pro- cesses (laser, electron beam and plasma).	Evaluate with a limited auton- omy a given welded fabrica- tion case study, and under guidance pointing out the La- ser, Plasma and Electron Beam process variables and application conditions.	3

Qualification	IWE	IWT	IWS	IWP
Teaching hours	6	1	2	2
Scope:	P3	- - P3	P3	P3
Welding Processes: electro-slag, friction; friction stir, magnetically impelled arc butt (MIAB); magnetic pulse welding, ultrasonic; explosive; diffusion; aluminothermic; high-frequency; stud, cold-pressure welding.				
Basic principles for the processes given in the relevant objective Heat generation for each type of process Equipment and accessories for each type of process Typical process applications and problems Consumables Welding parameters for each process Joint preparation: typical joint design for welding, fit-up, cleaning Relationship between welding parameters and joint configuration Health and safety specific to the processes Appropriate standards (ISO, CEN and National) for each process	× × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×	× × × × × × × ×	X - X X

		1.12.2 Othe	r Weldir	g Processes, other than 1.12.1 – LEARNING	OUTCOMES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE	Apply highly specialised understanding in detail- ing the fundamentals and the field of applica- tion of electro-slag, fric- tion; friction stir, mag- netically impelled arc butt (MIAB); magnetic pulse welding, ultra- sonic; explosive; diffu- sion; aluminothermic; high-frequency; stud, cold-pressure welding, etc. including equip- ment, main variables and common problems.	Demonstrate highly spe- cialised knowledge and skills in selecting each type of process according to their application and de- tailing the welding param- eters, joint preparations and all potential problems proposing structured solutions for overcoming each identi- fied problem.	7	Explain the principles and application of weld- ing processes, such as: electro-slag, friction; friction stir, magnetically impelled arc butt (MIAB); magnetic pulse welding, ultrasonic; explosive; diffusion; aluminothermic; high-fre- quency; stud, cold-pressure welding, etc. Explain the purpose and functions of each component of the equipment and accessories. Interpret respective standards.	Deduce application for each type of process Review the welding parame- ters, joint preparations and po- tential problems to be over- come for each process for a given application. Define potential hazards and determine the methods of safe handling and working Make use of standards con- sumables selection	Appraise autonomously a given welded fabrication case study, analyse its specific ap- plication and through under- taking a critical review specify, with a mechanical, metallurgi- cal and processing critique the most suitable. Where alterna- tives are appropriate or needed specify in detail the most suitable solution or solu- tions.	12
імт	Apply advanced under- standing of the funda- mentals and the field of application of electro-	Demonstrate advanced knowledge and skills in selecting each type of pro-	6	Explain the principles and application of weld- ing processes, such as: electro-slag, friction; friction stir, magnetically impelled arc butt (MIAB); magnetic pulse welding, ultrasonic;	Select application for each type of process, and the pre- cautions necessary to achieve a sound weld.	Appraise a given welded fabri- cation case study, analyse its specific application and rec- ommend a possible welding	8

	slag, friction; friction stir, magnetically impelled arc butt (MIAB); mag- netic pulse welding, ul- trasonic; explosive; dif- fusion; aluminothermic; high-frequency; stud, cold-pressure welding, etc. including equip- ment, main variables and common problems.	cess according to their ap- plication and identifying the welding parameters, joint preparations and ma- jor potential problems to be overcome.		explosive; diffusion; aluminothermic; high-fre- quency; stud, cold-pressure welding, etc. Explain the purpose and functions of each component of the equipment and accessories.	Select the parameters, joint preparations and potential problems to be overcome for each process for a given application. Define potential hazards and detail the methods of safe handling and working Make use of standards Associated with consumables	process, including the pro- cesses variables and applica- tion conditions and identify if needed alternative solutions	
IWS &IWP	Apply basic knowledge of the of the fundamen- tals and the field of ap- plication of electro-slag, friction; explosive; diffu- sion; aluminothermic; high-frequency; cold- pressure welding. In- cluding equipment, main variables and most common problems.	Demonstrate a fundamen- tal knowledge and skills in listing processes princi- ples, application in the dif- ferent industrial fields;	4	Outline the principles and application of weld- ing processes, such as: electro-slag, friction; friction stir, magnetically impelled arc butt (MIAB); magnetic pulse welding, ultrasonic; explosive; diffusion; aluminothermic; high-fre- quency; stud, cold-pressure welding, etc. Outline the common application of the pro- cesses in the different industrial fields. Recognise potential hazards and methods of safe handling and working.	selection, testing and pro- cessing variables. Apply methods of safe han- dling and working Identify those standards asso- ciated with consumable selec- tion, testing and processing variables	Evaluate with limited guidance a given welded fabrication case study, and point out pro- cess variables and application conditions	4

Qualification	IWE	IWT	IWS	IWP
Teaching hours	4	4	2	2
Scope:	P1	P1	P3	P3
Survey of edge preparation processes	Х	Х	Х	Х
Mechanical cutting	Х	Х	Х	Х
Principles of flame and flame powder cutting, equipment, applications and				
auxiliaries	Х	Х	Х	Х
Flame cutting parameters, edge quality, oxygen purity grades	Х	Х	Х	Х
Materials suitable for flame cutting	Х	Х	Х	Х
Basic principles of the various arc cutting processes (air arc, carbon and				
metal-arc, oxy-arc cutting, gauging with carbon electrode) equipment and				
auxiliaries	Х	Х	Х	Х
Materials suitable for arc-cutting, applications, cutting parameters for each				
process	Х	Х	Х	Х
Fundamentals of plasma cutting, equipment and auxiliaries	Х	Х	Х	Х
Materials suitable for plasma cutting, applications, cutting parameters, cut-				
ting gases	Х	Х	Х	Х
Plasma cutting special applications (under water cutting, cutting with water				
vortex)	Х	Х	-	-
Plasma gouging	Х	Х	Х	Х
Fundamentals of electron beam and laser drilling and cutting, equipment,				
parameters, applications	Х	X	-	-
-undamentals of water jet cutting, equipment, parameters, applications	Х	Х	Х	Х
Fundamentals of arc gouging and flame gouging, parameters and applica-				
tions	X	X	Х	Х
Appropriate standards (ISO, CEN and National) for each process	X	X	-	-
Health and safety	Х	Х	Х	Х

		1.13 Cutting, Dri	lling and	d other edge preparation processes - LEAR	NING OUTCOMES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE & IWT	Apply advanced under- standing in detail the basic principles and the fields of application of the most common cut- ting and edge prepara- tion processes used in	Demonstrate advanced knowledge and skills in detailing the range of ap- plication for: flame, arc, plasma, electron beam, and water jet cutting, in- cluding the influence of	6	Explain the principles of mechanical, flame, arc, plasma, electron beam, laser, and water jet cutting. Discuss the influence of each parameter for the above mentioned processes on the edge surface quality.	Delimit the range of applica- tion for: flame, arc, plasma, electron beam, laser and wa- ter jet cutting.	Appraise a given welded fabri- cation case study, analyse its specific application and rec- ommend a cutting process to be used and determine the re- spective process variables. State any post-processing	8

	weld construction, in- cluding equipment, main variables, safety and common problems.	each parameter for the mechanical, flame, arc, plasma, electron beam, laser, and water jet cutting processes on the edge surface quality		Predict the potential risks, hazards and meth- ods of safe handling and working	Define potential hazards and detail the methods of safe handling and working	precautions that should be taken prior to welding. Iden- tify, if needed, suitable alter- native solutions	
IWS & IWP	Apply basic knowledge of the basic principles and the fields of applica- tion of the most common cutting and edge prepa- ration processes used in weld construction, in- cluding equipment, main variables, safety and common problems.	Demonstrate fundamental knowledge and skills in selecting the most com- mon and different edge preparation processes and giving examples of all the characteristic parame- ters for each process.	4	Describe the principles of mechanical, flame, arc, plasma, electron beam, laser, and water jet cutting. Indicate the characteristic parameters for the above mentioned processes. Classify different edge preparation processes, considering technical and economic aspects. Outline potential risks and hazards related to edge preparation processes.	Apply methods of safe han- dling and working	Evaluate with a limited auton- omy a given welded fabrica- tion case study, and under guidance point out a cutting process to be used and the cutting process variables and conditions	4

1.14 Surfacing and Spraying				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	2	2	1	0
Scope:	P3	P3	P3	-
Working principles and applications for cladding techniques (rolling, explo-				
sive, strip, plasma-MIG, electroslag, laser, etc)	Х	Х	Х	-
Basic phenomena (metallurgical and stress) in interface region	Х	Х	-	-
Consumables for surfacing (cladding)	Х	Х	-	-
Working principles and applications of the spraying techniques (flame				
spraying with powder, flame spraying with wire, arc spraying with powder,				
arc spraying with wire, plasma spraying with powder, HVOF spraying, cold				
gas)	Х	Х	Х	-
Equipment and parameters for each technique	Х	Х	Х	-
Surface preparation of the base material	Х	Х	Х	-
Spraying materials	Х	Х	Х	-
Sprayed layer structure, and substrate structure	Х	Х	-	-
"Cold " and "fusion" spraying techniques	Х	Х	-	-
Applications and special problems	Х	Х	Х	-
Standards for surface treatment and processes for spraying of materials	Х	Х	Х	-
Health and safety	Х	Х	Х	-

		1	.14 Sur	facing and Spraying – LEARNING OUTCOME	S			
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL	
IWE & IWT	Apply advanced under- standing in detail the principles and fields of application of the most common surfacing tech- niques and their working principles, including equipment, main varia- bles, safety and com- mon problems.	Demonstrate advanced knowledge and skills in detailing the range of the most common surfacing spraying techniques and predicting the quality of a surfacing layer, indicating how the base material preparation influences the quality of the interface and structure.	6	Explain the principles and characteristics of the most common cladding and spraying tech- niques. Review the range of applications of "cold" and "fusion" spraying techniques. Review the most common spraying tech- niques and their industrial applications Predict the potential risks, hazards and meth- ods of safe handling and working	Define potential hazards and detail the methods of safe handling and working Interpret standards associ- ated with consumable selec- tion, testing and processing variables	Appraise a given fabrication case study, analyse its spe- cific application and recom- mend a surfacing or spraying process that should be used, along with the respective pro- cess variables. State the pre-processing pre- cautions that should be taken prior to surfacing to ensure in- tegrity. Identify, if needed, suitable alternative solutions	4	
IWS	Apply basic understand- ing of the requirements and gain basic knowledge of the princi- ples and fields of appli- cation of the most com- mon surfacing tech- niques and their working principles, including equipment, main varia- bles, safety and com- mon problems.	Demonstrate specialised knowledge and skills in identifying the most com- mon surfacing and spray- ing techniques	5	Describe the characteristics of the most com- mon cladding and spraying techniques. Describe the influence of surface preparation on spraying procedures. Indicate the most common spraying tech- niques and their industrial applications. Identify those standards associated with con- sumable selection, testing and processing variables	Apply methods of safe han- dling and working	Evaluate with a limited auton- omy a given fabrication case study, and under guidance point out surfacing an spray- ing techniques and surface preparation needed.	2	
IWP		NOT APPLICABLE						

Qualification	IWE	IWT	IWS	IWP
Teaching hours	8	6	4	0
Scope:	P3	P3	P3	-
Survey of welding mechanisation for higher productivity	Х	Х	Х	-
vantages and applications	х	х	х	-
turing systems)	х	х	х	-
CAD/CAM systems	Х	Х	-	-
Virtual factory (factory simulation)	Х	Х	-	-
Seam tracking, types and typical applications	Х	Х	-	-
Gas nozzle sensor, arc sensing, magnetic induction, vision system	Х	Х	Х	-
Narrow gap welding (SAW, MIG/MAG, TIG)	Х	Х	Х	-
Orbital welding (MIG/MAG, TIG)	Х	Х	-	-
Additive manufacturing (3D printing)	Х	Х	-	-
Typical robot type depending upon application field	Х	Х	Х	-
Application, typical problems and how to solve them	Х	Х	Х	-
Health and safety	Х	Х	Х	-

		1.15 Fully	mechar	nised processes and robotics – LEARNING C	UTCOMES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE	Apply highly specialised understanding in detail the principles and indus- trial application of weld- ing mechanisation and the use of robotics in welding, including appli- cation and systems.	Demonstrate highly spe- cialised knowledge and skills in selecting the best solution for higher produc- tivity in welding using ro- botics, automation and mechanisation, justifying all its strengths and limita- tions.	7	Explain the principle, benefits and application of each type of seam tracking system and of narrow gap and orbital welding. Review different applications for each welding process when applied to narrow gap or orbital welding. Discuss in a comprehensive way the use and advantages of a robot type system within an application field	Predict the best solution for higher productivity in welding using robotics, automation and mechanisation. Predict the potential risks, hazards and methods of safe handling and working.	Appraise a given welded fabri- cation case study, analyse its specific application and justify mechanised or automation or robotic application solution and identify if needed alterna- tive solutions	16
IWT	Apply advanced under- standing of the princi- ples and the and indus- trial application of weld- ing mechanisation and the use of robotics in welding, including appli- cation and systems.	Demonstrate advanced knowledge and skills in selecting solutions for higher productivity in welding using robotics, automation and mechani- sation.	6	Explain the differences between off-line and on-line programming. Explain the principle, benefits and application of each type of seam tracking system and of narrow gap and orbital welding.	Select solutions for higher productivity in welding using robotics, automation and mechanisation. Define the potential risks, haz- ards and methods of safe han- dling and working.	Appraise a given welded fabri- cation case study, analyse its specific application and rec- ommend mechanised or auto- mation or robotic application solution and identify if needed alternative solutions	12

Qualification	IWE	IWT	IWS	IWP
Teaching hours	4	4	2	0
Scope:	P3	P3	P3	-
Fundamentals of brazing and soldering (bonding mechanisms, surface ten-				
sion, wetting, capillary action)	Х	Х	Х	-
Survey of brazing and soldering techniques, equipment, range of applica-				
tions	Х	Х	Х	-
Consumables and fluxes for brazing and soldering, types, applications, and				
main functions of the fluxes	Х	Х	Х	-
Materials suitable for brazing, brazing requisites	Х	Х	Х	-
High vacuum brazing, brazing under controlled atmosphere	Х	Х	Х	-
Braze welding (Arc and laser brazing)	Х	Х	Х	-
Survey of soldering techniques (dip, wave flow, vapour phase)	Х	Х	Х	-
Brazing and soldering advantages and disadvantages	Х	Х	Х	-
Applications and special problems	Х	Х	Х	-
Overview on standards	Х	Х	Х	-
Health and safety	Х	Х	Х	-

			1.16 Bra	azing and soldering – LEARNING OUTCOME	6		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE & IWT	Apply advanced under- standing in detail the fundamentals and the field of application of brazing and soldering, main variables, safety, equipment, application, and common problems.	Demonstrate advanced knowledge and skills in deducing different appli- cation for each brazing and soldering technique, also detailing the need ac- tions to obtain a sound joint using brazing or sol- dering techniques and comparing each type of brazing and soldering technique with fusion welding	6	Explain each brazing and soldering technique. Review need actions to be implemented to ob- tain a sound joint using brazing or soldering techniques. Describe the types and characteristics of con- sumable and flux used in certain applications. Explain all potential hazards and methods of safe handling and working.	Deduce the different applica- tions for each brazing and sol- dering techniques, including joint preparations and poten- tial problems to be overcome Predict the potential risks, hazards and methods of safe handling and working	Appraise a given fabrication case study, analyse its spe- cific application and recom- mend if a brazing or soldering process should be used along with the respective process variables. State the pre-pro- cessing precautions that should be taken prior to braz- ing or soldering to ensure in- tegrity. Identify, if needed, suitable al- ternative processing solu- tions.	8
IWS	Apply basic knowledge of the fundamentals and the field of application of brazing and soldering, main variables, safety,	Demonstrate specialised knowledge and skills in describing the most rele- vant application for each brazing and soldering	5	Describe the different techniques for brazing and soldering. Indicate the standard operating procedures for brazing and soldering techniques.	Apply those standards re- quirements associated with consumable selection, testing and processing variables	Under limited guidance, eval- uate a given fabrication case study, and set out the prepa- ration required for application of brazing and soldering	4

	equipment, application, and common problems.	techniques, including main variables application and common problems	Outline the influence of surface preparation on brazing and soldering techniques. Describe the various the types and character- istics of consumables and fluxes employed. List the appropriate brazing or soldering vari- ables for a given application. Outline potential risks, hazards and methods of safe handling and working.	Apply methods of safe han- dling and working	
IWP			NOT APPLICABLE		

1.17 Joining processes for plastics				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	4	4	2	0
Scope:	P3	P3	P3	-
General information on materials and joining processes	Х	Х	Х	-
Study the operating principle for each type of process	Х	Х	Х	-
Hot plate welding, butt fusion, hot gas welding, extrusion welding, induction welding, resistance welding, implant welding, high frequency, friction, electro-fusion welding, ultrasonic welding, vibration welding, adhesive bonding				
	Х	Х	Х	-
Control of welding parameters, types of equipment, joint design	Х	Х	Х	-
Advantages and disadvantages	Х	Х	Х	-
Applications and typical problems and how to solve them	Х	Х	Х	-
Health and safety	Х	Х		-

		1. 17	7 Joinin	g processes for plastics – LEARNING OUTCO	OMES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
	Apply advanced under-	Demonstrate advanced knowledge and skills in detailing all the different	_	Explain the fundamentals of each joining pro- cess.	Review the different applica- tions for each joining process.	Appraise a given welded fabri- cation case study, analyse its	_
IWE & IWT	standing in detail the principles involved in joining plastics, includ-	application for each join- ing process, indicating its strengths and limitations,	6	Discuss the precautions necessary to obtain a sound joint for each process.	Predict the potential risks, hazards and methods of safe handling and working	specific application and rec- ommend the welding process, process variables, application	8

	ing the common tech- niques, equipment, ap- plication, main varia- bles, safety and com- mon problems.	and predicting the precau- tions necessary to obtain a sound joint for each pro- cess.				conditions and identify if needed alternative solutions	
IWS	Apply basic knowledge of the principles in- volved in joining plas- tics, including the com- mon techniques, equip- ment, application, main variables, safety and common problems.	Demonstrate specialised knowledge and skills in selecting the common in- dustrial application for each joining process	5	Identify the basic characteristics and the range of application for each joining process. Describe the operating principle of the most common joining processes. Indicate the state of the art of the industrial ap- plications for each joining process. Outline potential risks, hazards and methods of safe handling and working.	List the operating variables of the most common joining pro- cesses. Apply methods of safe han- dling and working	Evaluate with a limited auton- omy a given welded fabrica- tion case study, and under guidance point out the plastic welding processes technique and application.	4
IWP				NOT APPLICABLE			

Qualification	n IWE	IWT	IWS	IWP
Teaching hour	s 1	1	0	0
Scope:	P3	P3	-	-
General information on ceramics and composites and typical joining pro	-			
cesses	Х	Х	-	-
General study of the operating principles for each process	. X	Х	-	-
Advantages and disadvantages	X	Х	-	-
Applications and special problems	. X	Х	-	-

			1.18 Joining	process	ses for ceramics and composites – LEARNING	G OUTCOMES		
		ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE	& IWT	Apply basic knowledge of the general principles of joining ceramics and composites, including the common techniques (diffusion bonding, braz-	Demonstrate specialised knowledge and skills in selecting the proper join- ing technique to each type of ceramics and compo- sites	6	Explain the fundamentals of joining ceramics and composites. Discuss in a comprehensive way about the precautions to be taken to obtain a sound joint.	Predict the potential risks, hazards and define methods of safe handling and working Deduce the different applica- tions for each joining process applied to the type of sub-	Appraise a given fabrication case study, analyse its spe- cific application and recom- mend a process solution for joining ceramics or compo- sites including the application conditions and identify if needed alternative solutions	2

sonic, adhesive bond- ing, etc.), application, and common problems. joining technique success for each type of pro- cess. tions and potential problems to be overcome. Describe the various types and characteristics of consumables and activators employed for of consumables and activators employed for	IWS	S & IWP	joining these materials NOT APPLICABLE	
sonic, adhesive bond- ing, etc.), application, joining technique success for each type of pro- cess. tions and potential problems to be overcome.		and common problems.	Describe the various types and characteristics of consumables and activators employed for	
ing and soldering, dura-		sonic, adhesive bond- ing, etc.), application,	joining technique success for each type of pro- cess.	

1.19 Welding laboratory				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	10	8	6	0
Scope:	P3	P3	P3	-
Practical exercises showing the effect of each main welding parameter on				
the weld bead shape	Х	Х	Х	-
Discussion of results to help future evaluation and diagnosis	Х	Х	Х	-
Exercises should cover: MMA, TIG, MIG/MAG, Flux Cored wires, SAW,				
Oxy-gas	Х	Х	Х	-
Practical exercises showing the effect of each main cutting parameter on				
the cut surface	Х	Х	Х	-
Exercises should cover: Oxy-cutting, Arc-Air, Plasma, Arc-Cutting				
Welding simulation can be used as replacement				

			1.19 W	/elding laboratory – LEARNING OUTCOMES			
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE	Apply highly specialised understanding the effect of parameters on weld bead shape and cut sur- face quality.	Demonstrate highly spe- cialised knowledge and skills in predicting weld bead shape, morphology, and cutting surfaces, based in the processes parameters used.	7	Explain in detail the factors that influence the weld bead morphology (internal and external) and the cut surface quality according to the welding/cutting parameters used.	Evaluate weld beads and cut surfaces, in order to predict process problems Specify through using interna- tional standards the optimum technique to prepare and ana- lyse samples to maximise knowledge transfer. Prepare sampling documenta- tion and professional labora- tory report data	Appraise a given welded fabri- cation case study, analyse its specific application and pre- vent the incorrect weld bead shapes, morphologies and cutting surfaces	10

IAB-252r5-19

IWT	Apply advanced under- standing of the effect of parameters on weld bead shape and cut sur- face quality.	Demonstrate advanced knowledge and skills in deducing weld bead shape, morphology, and cutting surfaces, based in the processes parameters used. Outlining the common	6	Explain the factors that influence the weld bead shape and morphology (internal and ex- ternal) or cutting surface, according to the welding/cutting parameters used.	surfaces, in order to deduce process problems Through using international standards specify a prepara- tion technique to maximise knowledge transfer	Appraise a given welded fabri- cation case study, analyse its specific application to prevent the formation of incorrect weld bead shapes, morphologies and cutting surfaces	8
iws	Apply basic knowledge of the effect of parame- ters on weld bead shape and cut surface quality.	welding and cutting pa- rameters involved, their set-up, effect and how to check them during weld- ing, in accordance with the applicable proce- dures;	5	Demonstrate specialised knowledge and skills in identifying weld bead shape and morphol- ogy and cutting surfaces as a function of the welding/cutting parameters used.	Analyse weld beads and cut surfaces, in order to determine process problems	omy a given welded fabrica- tion case study, and under guidance point out the possi- ble problems regarding the weld bead shape and cutting surfaces due to the weld- ing/cutting parameters used.	6
IWP				NOT APPLICABLE			

Module 1 - Welding processes and equipment

Madula 1	IV	VE	IV	VT	IV	/S	IWP		
Module	MT	P1 *	MT	P1 *	MT	P1 *	MT	P1 *	
Teaching Hours	95	46	86	46	53	20	32	19	

* P1 = Part 1, Figures under P1 are given for the Standard Route (see 4.1)

Module 2: Materials and their behaviour during welding

Characterization of the general description of Module 2 – Materials and their behaviour during welding, describing the Qualification descriptors in terms of Knowledge – K, Skills – S, Competences - C for each IIW welding coordination qualification

COMPETENCE UNIT	2: MATERIALS AND THEIR BEH	AVIOUR DURING WELDING					
QUALIFICATION	KNOWLEDGE	SKILLS	COMPETENCES	EQF LEVEL (EQF L)	TEACHING HOURS	WORKLOAD (WL)	ECVET POINTS
INTERNATIONAL WELDING ENGINEER	Highly specialized knowledge (able to deduce, detail and ex- plain) and critical assessment regarding materials processing and applications and their be- haviour during welding and cut- ting.	Highly specialized skills including critical evaluation (able to predict and deduce), to determine the correct technical solutions in terms of materials processing by welding and cutting and be able to find solutions and predict problems due to the materials behaviour during welding in complex and unpredictable conditions	Manage in detail the materials applications and their behaviour due to welding and re- lated technologies in a highly complex context. Act as the responsible person for the defi- nition of the welding personnel tasks	7	115	230	20
INTERNATIONAL WELDING TECHNOLOGIST	Advanced knowledge (able to deduce, detail and explain) and critical assessment regarding materials processing and appli- cations and their behaviour during welding and cutting.	Advanced skills including critical evaluation (able to predict and deduce), to determine the correct technical solutions in terms of materials processing by welding and cut- ting and be able to find solutions and pre- dict problems due to the materials behav- iour during welding in complex and unpre- dictable conditions	Manage in detail the materials applications and their behaviour due to welding and re- lated technologies in a highly complex context. Act as the responsible person for the defi- nition of the welding personnel tasks	6	96	192	20
INTERNATIONAL WELDING SPECIALIST	Specialized and factual knowledge (able to understand and identify) regarding materi- als processing and applications and their behaviour during welding and cutting.	Specialised range of cognitive and practi- cal skills which will allow choosing the proper technical solutions in terms of ma- terials processing by welding and be able to develop solutions due to the materials behaviour during welding on common/reg- ular problems.	Manage and supervise the materials appli- cations and their behaviour due to welding and related technologies in unpredictable modifications. Act as the responsible person for super- vise the welding personnel tasks	4	56	112	10
INTERNATIONAL WELDING PRACTITIONER	Factual and theoretical knowledge (basic understand) regarding materials processing and applications and their be- haviour during welding and cut- ting.	Range of cognitive and practical skills re- quired to identify/choose the proper tech- nical solutions in terms of materials pro- cessing and materials behaviour during welding and cutting on basic and specific problems.	Self-manage the materials applications and their behaviour due to welding and re- lated technologies usually predictable but subject to changes. Will act as the responsible person for su- pervise the welding personnel tasks	4	23	54	2

Qualification	IWE	IWT	IWS	IWP
Teaching hours	4	4	2	0
Scope:	P1	P1	P1	
Crystalline structures	Х	Х	-	-
Crystal lattice structure types and imperfections	Х	Х	-	-
Deformation (Elastic/plastic)	Х	Х	Х	-
Cold and hot deformation.	Х	Х	Х	-
Work hardening and strain ageing	Х	Х	Х	-
Recrystallization	Х	Х	Х	-
Properties (influence of temperature, loading speed, environment)	Х	Х	Х	-

		2.1 St	ructure	and properties of metals – LEARNING OUTC	OMES			
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL	
IWE & IWT	Apply advanced under- standing of the structure and properties of metal- lic materials subjected to the special process of welding	Demonstrate advanced knowledge of the structure and properties of metallic materials	6	Explain the structures of metallic materials. Compare the properties of metals as structural materials. Interpret the changes in the crystallographic structures of metals due to cold deformation and recrystallization. Explain the effects of loading conditions on the properties of structural materials	Predict the changes in the crystallographic structures of metals following welding		8	
IWS	Apply understanding of the principles of the structure and properties of metallic materials subjected to the special process of welding.	Demonstrate specialised knowledge and skills in the structure and properties of metallic materials	4	Describe the structures of pure metals and al- loys Identify the basic mechanical properties of metals Outline the effect of loading conditions on the properties of metallic materials	Categorise the mechanical properties of metallic materials according to their structures.		4	
IWP		NOT APPLICABLE						

Qualification	IWE	IWT	IWS	IWP
Teaching hours	4	4	2	2
Scope:	P1	P1	P1	P1
Pure metals and alloys	Х	Х	Х	Х
Alloying elements	Х	Х	Х	Х
Binary diagrams (basic types, non-, fully- and partly soluble compo-				
nents)	Х	Х	Х	Х
Ternary diagrams	Х	-	-	-
Solidification, segregation and coring	Х	Х	-	-
Structure of alloys	Х	Х	Х	Х
Structure of castings	Х	Х	-	-
Solutions (solid, interstitial,)	Х	Х	-	-
Intermetallic compounds	Х	Х	-	-
Solid state transformations	Х	Х	-	-
Equilibrium and non equilibrium transformations	Х	Х	-	-
Strengthening mechanisms (solid solution, precipitation, grain size)	Х	Х	Х	Х
Ageing	Х	Х	Х	Х
Mechanical properties versus microstructure	Х	Х	Х	Х

		2.	2 Phase	Diagrams and Alloys – LEARNING OUTCOM	ES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
				Interpret crystalline lattice distortion from given alloying elements and subsequent structural changes.			
	Apply advanced under- standing of the princi- ples of alloying, the structures of alloys, phase diagrams and compounds in diagrams			Explain, in detail, solidification structure and segregation.	Produce relevant examples to illustrate solidification structure and segregation.		
IWE & IWT		Demonstrate advanced knowledge and skills in the use of Phase Dia- grams	6	Compare the mechanisms of precipitation, types of precipitates and their location within the microstructure.	Produce relevant examples to illustrate the principles of strengthening mechanisms.		8
		granis		Explain, in detail, the principles of transfor- mation and conditions under which it occurs.	Apply phase diagrams to de- fine microstructures, mechan-		
				Explain the relationship between microstruc- ture, phase diagrams and mechanical proper- ties.	ical properties and alloys.		

				Explain the principles of phase diagrams, and their construction. Exemplify basic types of alloy systems			
IWS & IWP	Apply basic knowledge of the principles of alloy- ing, the structures of al- loys phase diagrams and compounds in dia- grams	Demonstrate fundamental knowledge and skills in the application of princi- ples of Phase Diagrams	4	Recognise solidification structure and segre- gation in relevant examples. Outline the most common principles of strengthening mechanisms with appropriate examples. Summarise the relationship between micro- structure and binary phase diagrams. Describe alloys and binary phase diagrams	Select alloy microstructures from given phase diagrams	6	

2.3 Iron – carbon alloys				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	5	5	3	1
Scope:	P1	P1	P1	P1
Iron solidification and changes in solid state	Х	Х	Х	Х
Fe-C equilibrium diagram	Х	Х	Х	Х
Microstructure of Fe-C alloys (pearlite, ledeburite, etc.)	Х	Х	Х	-
Influence of alloying elements on the Fe-C equilibrium diagram	Х	Х	Х	-
Carbide forming elements	Х	Х	Х	Х
Iron-alloys with closed gamma-loop, with broadened gamma-area	Х	Х	-	-
Influence of cooling rate, hardenability	Х	Х	Х	Х
TTT and CCT diagrams	Х	Х	Х	Х
Influence of alloying elements on TTT diagrams	Х	Х	-	-
Grain growth effect	Х	Х	Х	-
Classification of heat treatment	Х	Х	Х	Х

	2.3 Iron – carbon alloys – LEARNING OUTCOMES									
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL			
IWE & IWT	Apply advanced under- standing of the metallur- gical processes occur- ring in welding of iron carbon alloys	Demonstrate advanced knowledge and skills in the metallurgy of welded iron carbon alloys	6	Infer the Fe-C system from a CCT diagram Compare the influences of alloying elements and cooling rate on microstructure	Predict the microstructure from a CCT diagram		10			

-									_
					Exemplify the structures occurring in rapid cooling				
					Explain the process and consequences of grain growth				
					Classify, in detail, the effect of heat treatment on microstructure				
	IWS	Apply understanding of the principles of alloy- ing, the structures of al- loys, phase diagrams and compounds in dia- grams	Demonstrate specialised knowledge and skills in the use of Phase Dia- grams	5	Recognise Fe-C alloy structures Describe the influence of cooling rate on alloy microstructure regarding material hardenabil- ity Describe prevention of coarse structure Classify heat treatment	Select Fe-C alloys from a CCT diagram		6	
	IWP	Apply basic knowledge about the metallurgical processes occurring in welding of iron carbon alloys.	Demonstrate fundamental knowledge and skills in the metallurgical pro- cesses, applying them to welding of iron carbon al- loys.	4	Identify phases in the Fe-C diagram. Identify carbide forming elements. Outline special items in the Fe-C diagram (types of Fe-C alloys) Outline the most common influence of cool- ing rate, hardenability. Name and classify simple cases of heat treatment	Read simple TTT and CCT diagrams Compare hardness of steel according to their composition and cooling rate Check iron solidification and microstructure in solid state of iron. Check the Fe-C equilibrium diagram.	Evaluate with a limited auton- omy a given welded fabrica- tion case study, and under guidance pointing out the most common problems re- garding the weldability of iron carbon alloys	3	

Qualification	IWE	IWT	IWS	IWP
Teaching hours	4	4	2	2
Scope:	P1	P1	P1	P1
Introduction to metallurgy of steels	Х	Х	-	-
Steel making processes (furnaces, convertors, deoxidation, etc.)	Х	Х	-	-
Processing of steel products (hot, cold rolling, casting, etc.)	Х	Х	Х	Х
Chemical composition and impurities	Х	Х	Х	Х
Properties of steels	Х	Х	Х	Х
Discontinuities and defects in steel	Х	Х	Х	Х
Classification of steel (purpose of use, ISO/TR 15608)	Х	Х	Х	Х
Designation of steels (National, EN Standards, Wr. No.)	Х	Х	Х	Х
Steel products (plates, tubes, profiles)	Х	Х	Х	Х
Inspection Certificate (i.e. EN 10204).	Х	Х	Х	Х

		2.4 Man	ufacture	and classification of steels – LEARNING OU	TCOMES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE & IWT	Apply advanced under- standing of the funda- mentals of steels, pro- duction, their properties and composition, classi- fication and standardi- zation, and steel semi- products	Demonstrate advanced knowledge and skills in the manufacture and clas- sification of steels	6	Explain the basic technology of steel produc- tion Compare the influence of impurities and chemical composition on basic mechanical properties Explain how steel is processed by rolling and casting Compare the properties of steel semi-prod- ucts Interpret standards for steel designation and standards on rolling products	Discuss differing types of steel, particularly structural steels Decide on acceptance meth- ods and types of inspection documents		8
IWS & IWP	Apply basic knowledge on the fundamentals of steels, production, their properties and composi- tion, classification and standardization, and steel semi-products	Demonstrate fundamental knowledge and skills in the manufacture and clas- sification of steels	4	Describe how steel is processed by rolling and casting Identify the most common properties of steel semi-products Identify types of inspection documents Identify and interpret inspection certificates (i.e EN 10204).	Categorise types of steel, par- ticularly structural steels Apply standards for steel des- ignation and standards on roll- ing products		4

2.5 Behaviour of structural steels in fusion welding				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	4	4	2	2
Scope:	P1	P1	P1	P1
Thermal field	Х	Х	-	-
Heat input and efficiency of heat input	Х	Х	Х	Х
Peak temperature	Х	Х	Х	Х
Cooling rate and thermal cycle, Δt 8/5	Х	Х	Х	Х
Heat flow	Х	Х	Х	Х
Heat-affected zone (grain growth and grain refinement, CCT diagrams)	Х	Х	Х	Х
Properties of HAZ	Х	Х	Х	Х
Carbon equivalent	Х	Х	Х	Х
Weld pool, weld shape	Х	Х	Х	Х
Dilution	Х	Х	-	-
Structure of weld metal	Х	Х	Х	Х
Effect of multi-pass welding	Х	Х	Х	Х
Equations for the heat distribution	Х	Х	-	-
Weld metal structure (weld protection, consumables, etc.)	Х	Х	Х	Х
Solidification of weld pool	Х	Х	Х	Х
Relationship grain size – toughness	Х	Х	Х	Х
Transition temperature	Х	Х	Х	Х

		2.5 Behavio	ur of str	uctural steels in fusion welding – LEARNING	OUTCOMES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE & IWT	Apply advanced under- standing of the metallur- gical fundamentals of welding of all types of structural steels	Demonstrate advanced knowledge and skills in the metallurgy of welded structural steels	6	Explain the temperature distribution in welds and the microstructure formed as a result of welding. Infer the effects of the weld protection and the type of consumable on the microstructure of weld metal and on its properties for a single- pass weld versus a multi-pass weld. Compare the areas of the HAZ, the grain size and microstructural changes for a single-pass weld versus a multi-pass weld. Explain the various aspects of weldability.	Predict the effects of heat in- put, cooling rate and multi- pass operation on weld metal solidification and the micro- structure formed for a single- pass weld versus a multi- pass weld. Predict the effects of micro- structural changes in the HAZ on properties for a single- pass weld versus a multi- pass weld.	Appraise a non-complex structural steel joints involving single pass and multi pass welds and recommend the heat input and thermal man- agement required to minimise residual stress and avoid cold-cracking	8

IWS &IWP	Apply basic knowledge of the principles of the metallurgical fundamen- tals of welding of all types of structural steels	Demonstrate fundamental knowledge and skills in the metallurgy of welded structural steels	4	Describe the temperature distribution in welds Identify the microstructure formed in a single pass weld versus a multi-pass weld. Associate the effects of the weld protection and the type of consumables on the micro- structure of the weld metal with the properties for a single pass weld versus a multi -pass weld. Identify areas of HAZ, the reasons for grain	Categorise the various aspects of weldability	Evaluate a non-complex struc- tural steel joints and, under limited guidance, recommend the application of heat treat- ment and single or multi pass welds to minimise residual stress and avoid cold-crack- ing.	4
	,			Identify areas of HAZ, the reasons for grain size and microstructural changes and their effects on properties for a single pass weld versus a multi-pass weld.		stress and avoid cold-crack- ing.	

2.6 Cracking phenomena in welded joints				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	8	6	4	2
Scope:	P3	P3	P3	P3
For unalloyed, heat resistant and stainless steels as appropriate: Cold cracking:				
Cracking mechanisms in weld metal and HAZ, causes and avoidance	Х	Х	Х	Х
Effect of hydrogen	Х	Х	Х	Х
Source and diffusion of hydrogen	Х	Х	Х	Х
Control of hydrogen	Х	Х	Х	Х
Effect of microstructure	Х	Х	Х	Х
Susceptible microstructure and its control	Х	Х	Х	Х
Influence of alloying elements on susceptibility	Х	Х	Х	Х
Effect of stresses	Х	Х	Х	Х
Influence of restraint	Х	Х	Х	Х
Influence of preheat	Х	Х	Х	Х
Influence of austenitic weld metal	Х	Х	Х	Х
Testing of cold cracking susceptibility	Х	Х	-	-
Determination of preheat and interpass temperature (diagrams) ISO/TR				
17671-2 and ISO 13916	Х	Х	-	-
Hot cracking:				
Cracking mechanisms in particular in weld metal and in HAZ (solidification	X	Ň	X	X
cracking, liquation cracking, etc.); causes and avoidance	X	X	X	X
Effect of alloy elements, heat input, bead shape, nugget shape	Х	Х	Х	Х

Liquation phases	Х	Х	Х	Х
Avoidance of hot cracking, ISO/TR 17671-2	Х	Х	Х	Х
Testing for hot cracking susceptibility	Х	Х	-	-
Reheat cracking:				
Cracking mechanisms in weld metal and HAZ; causes and avoidance	Х	Х	Х	Х
Type of steels sensitive to reheat cracking	Х	Х	Х	Х
Effect of alloy elements, thermal cycles, stress	Х	Х	Х	-
Cracking during heat treatment and multi -pass welding	Х	Х	Х	Х
Avoidance of reheat cracking	Х	Х	Х	Х
Testing for reheat cracking susceptibility	Х	Х	-	-
Lamellar tearing:				
Cracking mechanism; causes and avoidance	Х	Х	Х	Х
Effects of inclusions, joint configuration, stress	Х	Х	Х	Х
Control of lamellar tearing by material choice and joint configuration				
ISO/TR 17671-2	Х	Х	Х	Х
Testing for susceptibility (through-thickness properties)	Х	Х	-	-
Steels with increased resistance to lamellar tearing	Х	Х	Х	Х
<u>General:</u>				
parametric equations for cracking sensitivity evaluation	Х	Х	-	-
morphology of individual crack types	Х	Х	-	-
Standards for crack sensitivity testing	Х	Х	-	-

		2.6 Cra	cking pł	nenomena in welded joints – LEARNING OUT	COMES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE	Apply highly specialised understanding of the fundamentals of various cracking mechanisms in welded joints, the way in which welding variables affect the incidence of cracking, and methods of avoidance	Demonstrate highly spe- cialised knowledge and skills in avoidance of cracking in welds	7	Explain in detail the metallurgical mechanisms for each of the major types of cracking. Infer the type and cause of cracking from study of fractured material and its history. Compare alternatives that will reduce or elim- inate the occurrence of lamellar tearing in welded construction/fabrication. Relate the effects of inclusions, joint configu- ration, stress and fatigue on susceptibility to weld cracking. Relate changes in welding variables to the control of cracking of welds.	Predict the effects of chemical and physical variables for each of the major types of cracking. Decide on appropriate precau- tions to avoid variations in key welding parameters causing cracking Justify the tests that will assist in finding the solution of crack- ing problems.	Appraise a welded joint and recommend the methods that may be applied to determine and control the welding varia- bles to avoid cracking	16

IWT	Apply advanced under- standing of the funda- mentals of various cracking mechanisms in welded joints, the way in which welding variables affect the incidence of cracking, and methods of avoidance	Demonstrate advanced knowledge and skills in avoidance of cracking in welds	6	Compare the metallurgical mechanisms for each of the major types of cracking. Explain the effects of chemical and physical variables for each of the major types of crack- ing. Compare susceptibility to cracking by refer- ence to the key welding parameters Infer the type and cause of cracking from study of fractured material and its history. Compare the effects of inclusions, joint config- uration, stress and fatigue on weld cracking. Explain methods of control of weld cracking.	Select suitable tests that will assist in finding the solution of cracking problems. Select alternatives that will re- duce or eliminate the occur- rence of lamellar tearing in welded construction/fabrica- tion. Assess appropriate precau- tions to avoid cracking.	Appraise a welded joint and select options that may be ap- plied to determine and control the welding variables to avoid cracking	12	
IWS	Apply understanding of the fundamentals of var- ious cracking mecha- nisms in welded joints, the way in which weld- ing variables affect the incidence of cracking, and methods of avoid- ance	Demonstrate specialised knowledge and skills in avoidance of cracking in welds	5	Identify the metallurgical mechanisms for each of the major types of cracking. Describe the effects of chemical and physical variables for each of the major types of crack- ing. Classify susceptibility to cracking by reference to the key welding parameters Recognise the type and cause of cracking from study of fractured material and its history.	Choose appropriate precau- tions to avoid cracking. Select alternatives that will re- duce or eliminate the occur- rence of lamellar tearing in welded construction/fabrica- tion.	Evaluate a welded joint and, under limited guidance, select options that may be applied to control the welding variables to avoid cracking	8	
IWP	Apply basic knowledge on the fundamentals of various cracking mech- anisms in welded joints, the way in which weld- ing variables affect the incidence of cracking, and methods of avoid- ance.	Demonstrate fundamental knowledge and skills in methods of avoiding cracking phenomena ap- plied to welded joints.	4	Identify the type of cracking and the reason for its occurrence. Outline the metallurgical mechanisms for each of the major types of cracking. List the most common cracking phenomena in welding joints: cold cracking, hot cracking, reheat cracking and lamellar tearing.	Select alternative solutions and appropriate precautions to avoid cracking. Select simple alternatives that will reduce or eliminate the occurrence of cold cracking, hot cracking, reheat cracking and lamellar tearing in welded fabrication. Determine the main factors affecting each cracking type. Choose the main tools to avoid cracking	Appraise with limited auton- omy the main factor affecting cracking when welding. Apply with limited autonomy basic procedures to eliminate cracking phenomena.	6	

Qualification	IWE	IWT	IWS	IWP
Teaching hours	4	2	1	0
Scope:	P1	P1	P1	-
Fractures because of mechanical overload (mechanism and avoidance)	Х	Х	Х	-
Fatigue fractures (mechanism and avoidance)	Х	Х	Х	-
Creep fractures (mechanism and avoidance)	Х	Х	Х	-
Brittle fractures, ductile fractures	Х	Х	Х	-
Samples for cases of damage	Х	Х	-	-

		2.7 Fract	ures and	d different kinds of fractures – LEARNING OU	JTCOMES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE	Apply highly specialised understanding of the metallurgical mecha- nisms of different kinds of fractures in base ma- terials and weldments	Demonstrate highly spe- cialised knowledge and skills in fractures	7	Explain in detail the differences between cracks and fractures. Compare in detail ductile and brittle fractures Compare in detail the formation mechanisms of different types of fractures	Determine the fracture type from fracture surface infor- mation	Apply calculations and Failure Assessment Diagrams (FADs) to a fracture case study to determine the condi- tion of the weld and identify the causes	8
IWT	Apply advanced under- standing of the metallur- gical mechanisms of dif- ferent kinds of fractures in base materials and weldments	Demonstrate advanced knowledge and skills in fractures	6	Explain the differences between cracks and fractures Compare ductile and brittle fractures Compare the formation mechanisms of differ- ent types of fractures	Assess fracture types given fracture surface information	Apply Failure Assessment Di- agrams (FADs) to a fracture case study, identify the type of fracture and predict its likely cause	4
IWS	Apply understanding of the metallurgical mech- anisms of different kinds of fractures in base ma- terials and weldments	Demonstrate specialised knowledge and skills in fractures	5	Describe the differences between cracks and fractures Recognise the differences between ductile and brittle fractures	Categorise fractures given fracture surface information	Identify the type of fracture in a given case study and, under limited guidance, select the possibe causes.	2
IWP				NOT APPLICABLE			

2.8 Heat treatment of base materials and welded joints									
Qualification	IWE	IWT	IWS	IWP					
Teaching hours	4	4	2	1					
Scope:	P1	P1	P1	P1					
Heat treatment of base materials									
Normalising	Х	Х	Х	Х					
Hardening	Х	Х	Х	-					
Quenching and Tempering	Х	Х	Х	Х					
Solution annealing	Х	Х	Х	-					
Homogenisation	Х	Х	Х	Х					
Recrystallisation annealing	Х	Х	Х	Х					
Precipitation hardening	Х	Х	Х	-					
Heat treatment of welded joints and work pieces									
Post Weld Heat Treatment (Stress relieving, normalizing, hardening)	Х	Х	Х	Х					
Technical guidelines for heat treatment									
Heat treatment procedures	Х	Х	Х	Х					
Introduction to heat treatment equipment	Х	Х	Х	Х					
Regulations/guidelines (codes and technical reports) ISO/TR 17663	Х	Х	Х	-					
Introduction to temperature measurement and recording ISO 13916	Х	X	Х	X					

		2.8 Heat treat	ment of	base materials and welded joints – LEARNIN	G OUTCOMES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE & IWT	Apply advanced under- standing of the metallur- gical transformations of materials during differ- ent heat treatment	Demonstrate advanced knowledge and skills in the metallurgy of heat treatment of base materi- als and welded joints	6	Explain each of the major heat treatments and their objectives Compare the mechanisms of structural changes which take place when a material is heat treated. Compare the effects of temperature and time on transformations including the effect of tem- perature change rate. Interpret the code requirements for heat treat- ment	Predict the necessity to per- form heat treatment after welding depending of the type and thickness of steel, the ap- plication and the code. Predict the mechanical prop- erty outputs in consideration of hardenability, mass effects	Appraise furnace search data and interpret thermal charts to recommend heat treatment of a welded joint to achieve given requirements	8
				Infer the purpose of the code requirements in terms of structural changes.	and ruling sections.		

IWS	Apply understanding of the metallurgical trans- formations of materials during different heat treatment	Demonstrate specialised knowledge and skills in the metallurgy of heat treatment of base materi- als and welded joints	4	Identify the major heat treatments and their objectives. Associate code requirements for heat treatment with their objectives	Choose appropriate heat treatment after welding de- pending of the type and thick- ness of steel, the application and the code.	Select and implement an ap- propriate heat treatment pro- cedure for a given require- ment	4
IWP	Apply basic knowledge about the metallurgical transformations of ma- terials during different heat treatment.	Demonstrate fundamental knowledge and skills in metallurgical transfor- mation of base materials and welded joints, when heat treated	4	Outline the major heat treatments and their objectives List the most common heat treatments of base materials and of welded joints List the necessary conditions/requirements when is needed to perform heat treatment af- ter welding depending of the type and thick- ness of steel, the application and the product standards and/or construction codes and the code.	Measure and record of the temperature when welding: pre-heat and interpass tem- peratures.	Evaluate with a limited auton- omy a given welded fabrica- tion case study, and under guidance pointing out how temperature will be meas- ured. Control with limited auton- omy if it will be need an heat treatment to the weld joints or not.	2

2.9 Structural (unalloyed) steels				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	4	4	2	2
Scope:	P1	P1	P1	P1
Steels group 1 according to ISO/TR 15608	Х	Х	Х	Х
Chemical composition	Х	Х	Х	Х
Grades of unalloyed steels	Х	Х	Х	Х
Carbon equivalent CE	Х	Х	Х	Х
Relationship CE – hardenability	Х	Х	Х	Х
Welding processes	Х	Х	Х	Х
Filer materials, choice, standards	Х	Х	Х	Х
HAZ microstructure and properties (hardness, toughness)	Х	Х	-	-
Effects of weld heat treatment	Х	Х	Х	Х
Applications	Х	Х	-	-
Standards, (ISO, CEN and National)	Х	Х	Х	Х

2.9 Structural (unalloyed) steels – LEARNING OUTCOMES								
ACTIONS/ PERFORMANCE ACHIEVEMENTS CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL			
IWE & IWT	Apply highly specialised understanding of struc- tural unalloyed steels	Demonstrate highly spe- cialised knowledge and	7	Compare the structural properties of unal- loyed steels	Discuss the choice of welding process and filler material		8	

	and the effects of weld- ing processes on the weld joint	skills in welding of struc- tural unalloyed steels		Relate standards for filler materials to weld properties based on chemistry and welding process used	given unalloyed steel grade and relevant standards Predict the effect of welding process and filler metal selec- tion on weld HAZ properties		
IWS & IWP	Apply basic knowledge of structural unalloyed steels and the effects of welding processes on the weld joint	Demonstrate fundamental knowledge and skills in the application of struc- tural unalloyed steels and in welding of structural un- alloyed steels	4	Outline the most common structural properties of unalloyed steels Identify appropriate welding processes and filler materials. Recall the main grades and properties of structural steels. (Unalloyed or low alloyed steels).	Choose the appropriate weld- ing processes and filler mate- rials for a given application. Make use of the appropriate ap- plication of ISO, CEN and Na- tional standards for filler materi- als.	Appraise with limited auton- omy the application of appro- priate welding process.	4

2.10 High strength steels				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	10	8	4	1
Scope:	P3	P3	P3	P3
Steels group 2 and 3 according to ISO/TR 15608	Х	Х	Х	Х
Concept of grain refinement (micro-alloying elements, formation and dilution of par-				
ticles)	Х	Х	-	-
Principles of treatment (controlled rolling, accelerated cooling, direct quench, ther-				
momechanical treatment etc.)	Х	Х	Х	Х
Normalised grades (Chemical composition, properties)	Х	Х	Х	Х
Quenched and tempered grades (Chemical composition, properties)	Х	Х	Х	Х
High strength steels (Chemical composition, Mechanical properties)	Х	Х	Х	Х
Weldability, t 8/5 concept, preheat and interpass temperature, CE	Х	Х	-	-
Influence of welding process on HAZ (microstructure, properties)	Х	Х	-	-
Steels for automotive industries (TRIP, TWIP, dual phase, etc.)	Х	Х	-	-
Applications	Х	Х	Х	Х
Standards global (ISO), regional (CEN) and National	Х	Х	Х	Х
Choice of filler metal (mismatching, etc.)	Х	Х	Х	-

2.10 High strength steels – LEARNING OUTCOMES										
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL			

IAB-252r5-19

IWE	Apply highly specialised understanding of the ef- fects of micro-alloying elements on structure, mechanical properties and weldability, with ref- erence to fine-grained and high strength steels	Demonstrate highly spe- cialised knowledge and skills in the properties of high strength steels	7	Explain in detail the different methods to obtain fine-grained steels, including the effects of micro-alloying. Relate grain refinement to mechanical properties. Relate steel grade to weldability Compare applicable welding processes Explain in detail the effects of heat treat- ment after welding and contrast applicable welding pro- cesses and their effect on metallurgical re- sponse	Discuss appropriate applications of high strength steels Predict potential problems for given welding processes and steel grades Justify the selection of heat treat- ment conditions (in particular tem- perature) for given welding pro- cesses and steel grades Decide on the appropriate filler metal for a given application		20
IWT	Apply advanced under- standing of the effects of micro-alloying elements on structure, mechani- cal properties and weld- ability, with reference to fine-grained and high strength steels	Demonstrate advanced knowledge and skills in the properties of high strength steels	6	Explain in detail the different methods to obtain fine-grained steels, including the effects of micro-alloying. Compare the mechanical properties achieved through grain refinement Interpret the relationship between grade and weldability Compare applicable welding processes Explain the effects of heat treatment after welding	Select appropriate applications of high strength steels Predict potential problems for given welding processes and steel grades Select heat treatment conditions (in particular temperature) for given welding processes and steel grades Select the appropriate filler metal for a given application		16
IWS	Apply understanding of the effects of micro-al- loying elements on structure, mechanical properties and weldabil- ity, with reference to fine-grained and high strength steels	Demonstrate specialised knowledge and skills in the properties of high strength steels	5	Describe the different methods to obtain fine-grained steels Associate grain refinement with mechani- cal properties. Recognise the relationship between grade and weldability Identify applicable welding processes Associate specific welding processes with potential problems Recognise the effects of heat treatment after welding	Select appropriate applications of high strength steels Select heat treatment conditions (in particular temperature) for given welding processes and steel grades Choose the appropriate filler metal for a given application		4
IWP	Apply basic knowledge about the effects of mi- cro-alloying elements on structure, mechani-	Demonstrate fundamental knowledge and skills in determining the effects of micro alloying to high	4	Outline the relationship between grain re- finement and mechanical properties. Outline the relationship between grade and weldability.	Choose the appropriate welding processes and filler materials for a given application	Appraise with limited auton- omy the application of appro- priate welding process ac- cording to each fine-grain	2

International Welding Engineers, Technologists, Specialists and Practitioners © Copyright EWF - Approved: January 2019

cal properties and weld-	strength steels regarding		Determine the main effects of	steel material and how to	
ability with reference to	these steels weldability.	Identify the most common applicable	heat treatment after welding, de-	minimise .	
fine-grained and high	-	welding processes and potential prob-	ducing the conditions of such		
strength steels.		lems.	treatment.		

2.11 Application of structural and high strength steels									
Qualification	IWE	IWT	IWS	IWP					
Teaching hours	2	2	2	1					
Scope:	P3	P3	P3	P3					
Bridges	Х	Х	Х	Х					
Cranes	Х	Х	Х	Х					
Buildings	Х	Х	Х	Х					
Ships	Х	Х	Х	Х					
Pipeliness	Х	Х	Х	Х					
Pressure vessels	Х	Х	Х	Х					
Automotive equipment	Х	Х	Х	Х					
Standards global (ISO), regional (CEN) and National	Х	Х	Х	Х					

		2.11 Applicat	ion of st	ructural and high strength steels – LEARNIN	G OUTCOMES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE & IWT	Apply highly specialised understanding of weld- ing problems dealing with the fundamental as- pects of the application of structural and high strength steels, with par- ticular reference to physical, chemical and mechanical characteris- tics.	Demonstrate highly spe- cialised knowledge and skills in application of structural and high strength steels	7	Explain in detail the importance of choice of material with reference to specific applications Explain in detail the use of structural and high strength steels and their application fields	Discuss the practical applica- tion of high strength steels in the designs of bridges, cranes, pressure vessels, au- tomotive equipment, buildings (architectures), ships, and pipelines etc.	Appraise a given welded fabri- cation study and recommend the material, welding process and welding consumable se- lection to achieve the required characteristics, providing al- ternatives where relevant	4
IWS	Apply understanding of welding problems deal- ing with the fundamental aspects of the applica- tion of structural and high strength steels, with particular reference to physical, chemical and mechanical charac- teristics.	Demonstrate specialised knowledge and skills in application of structural and high strength steels	5	Recognise the importance of choice of mate- rial with reference to application Describe the use of structural and high strength steels and their application fields.	Show, using examples, the practical application of high strength steels in designs of bridges, cranes, pressure ves- sels, automotive equipment, buildings (architectures), ships, and pipelines etc.	Evaluate a given welded fabri- cation study and, under limited guidance, select the welding methods and control condi- tions in the use of structural and high-strength steel	4

IWP	Apply basic knowledge about welding problems dealing with the funda- mental aspects of the application of structural and high strength steels, with particular reference to physical, chemical and mechani- cal characteristics.	Demonstrate fundamental knowledge and skills in the application of struc- tural and high strength steels	4	Recognise the importance of choice of mate- rial with reference to application Outline the most common application of structural and high strength steels.	Illustrate with examples the use of structural and high strength steels, outlining their application fields Illustrate with examples of the practical application and de- sign of bridges, cranes, pres- sure vessels, automotive equipment.	Appraise with limited auton- omy the application of appro- priate welding process ac- cording to each material.	2	
-----	---	--	---	---	--	--	---	--

2.12 Creep and creep resistant steels				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	4	3	2	0
Scope:	P3	P3	P3	-
Creep mechanism	Х	Х	Х	-
Creep sensitivity testing	Х	Х	Х	-
Temper embrittlement, e.g. step cooling test	Х	Х	Х	-
Types of creep/heat resistant steels ISO/TR 15608, groups 4, 5, and 6	Х	Х	Х	-
Applicable welding processes	Х	Х	Х	-
Filler materials - special chemical requirements for creep resistance	Х	Х	Х	-
Welding problems and precautions	Х	Х	Х	-
Effects of weld heat treatment	Х	Х	Х	-
Quality control of the welded joint	Х	Х	Х	-
Standards (ISO, CEN and National)	Х	Х	Х	-

2.12 Creep and creep resistant steels – LEARNING OUTCOMES											
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL				
IWE	Apply highly specialised understanding of creep phenomena, general creep-resistant steel types, their structure and alloying elements	Demonstrate highly spe- cialised knowledge and skills in creep and creep- resistant steels	7	Explain in detail the fundamental aspects of the phenomena and phases of creep Relate the effects of alloying elements and steel structure to creep resistance	Discuss the weldability of Cr- Mo steels considering appro- priate welding processes and types of consumables Predict remaining creep life by use of the most common methods.		8				

IWT	Apply advanced under- standing of creep phe- nomena, general creep- resistant steel types, their structure and alloy- ing elements	Demonstrate advanced knowledge and skills in creep and creep-resistant steels	6	Explain the fundamental aspects of the phe- nomena and phases of creep Compare the effects of alloying elements and steel structure on creep resistance	Assess the weldability of Cr- Mo steels considering appro- priate welding processes and types of consumables. Predict remaining creep life by use of the most common methods.	6
IWS	Apply understanding of creep phenomena, gen- eral creep-resistant steel types, their struc- ture and alloying ele- ments	Demonstrate specialised knowledge and skills in creep and creep-resistant steels	5	Describe the fundamental aspects of the phe- nomena and phases of creep Recognise the effects of alloying elements and steel structure on creep resistance	Categorise the weldability of Cr-Mo steels considering ap- propriate welding processes and types of consumables.	4
IWP				NOT APPLICABÇLE		

2.13 Steels for cryogenic applications				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	4	3	2	0
Scope:	P3	P3	P3	-
Steels group 9 according to ISO/TR 15608	Х	Х	Х	-
Requirements for low temperature applications	Х	Х	Х	-
Survey/list of cryogenic steels (including 9% Ni)	Х	Х	Х	-
Effects of nickel on low temperature properties of low alloy steels	Х	Х	Х	-
Applicable welding processes	Х	Х	Х	-
Filler materials	Х	Х	Х	-
Welding problems and precautions	Х	Х	Х	-
Properties and application of various types of cryogenic steels	Х	Х	-	-
Quality control of the welded joint	Х	Х	Х	-
Standards (ISO, CEN and National)	Х	Х	Х	-

		2.13 \$	Steels fo	or cryogenic applications – LEARNING OUTC	OMES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE	Apply highly specialised understanding of solu- tions to welding applica- tions requiring the use of	Demonstrate highly spe- cialised knowledge and skills in application of	7	Explain in detail methods of toughness testing and the parameters affecting toughness	Discuss the range of applica- tions for the various types of cryogenic steels		8

	the relationship be- tween toughness and temperature, metallurgi- cal structure and the weldability of cryogenic steels	welding to cryogenic steels		Relate microstructure to toughness of cryo- genic steels Exemplify the effect of nickel on crystallo- graphic structure Exemplify the effect of nickel content on weld- ability	Predict weldability of cryo- genic steels, considering ap- propriate welding processes and types of consumables	
IWT	Apply advanced under- standing of solutions to welding applications re- quiring the use of the re- lationship between toughness and temper- ature, metallurgical structure and the welda- bility of cryogenic steels	Demonstrate advanced knowledge and skills in application of welding to cryogenic steels	6	Explain methods of toughness testing and the parameters affecting toughness Explain the effect of nickel on crystallographic structure Compare the effect of differing levels of nickel content on weldability of cryogenic steels	Discuss the range of applica- tions for the various types of cryogenic steels Assess weldability of cryo- genic steels, considering ap- propriate welding processes and types of consumables	6
IWS	Apply understanding of solutions to welding ap- plications requiring the use of the relationship between toughness and temperature, metallurgi- cal structure and the weldability of cryogenic steels	Demonstrate specialised knowledge and skills in application of welding to cryogenic steels	5	Recognise the effect of nickel on crystallo- graphic structure Associate weldability of cryogenic steels with the effect of nickel content	Show the range of applica- tions for the various types of cryogenic steels Categorise the weldability of cryogenic steels, considering appropriate welding pro- cesses and types of consum- ables	4
IWP				NOT APPLICABLE		

Qualification	IWE	IWT	IWS	IWP
Teaching hours	4	3	2	1
Scope:	P3	P3	P3	P3
Fundamentals of electrochemistry	Х	Х	Х	-
Redox potential	Х	Х	Х	-
Passivation	Х	Х	Х	Х
Overall corrosion	Х	Х	Х	Х
Differential aeration	Х	Х	Х	
Cathodic, anodic protection	Х	Х	Х	-
Types of corrosion (intercrystalline, transcrystalline, knife-line attack. pit-				
ting, crevice, and stress-corrosion)	Х	Х	Х	-
Pickling and passivating	Х	Х	Х	Х
Corrosion testing	Х	Х	Х	-
Demonstrations for IWE - 2 hours from 4				
Demonstrations for IWT - 1 hour from 3				
Demonstrations for IWS/IWP - 0 hours				

		2	.14 Intro	duction to corrosion – LEARNING OUTCOM	ES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE	Apply highly specialised understanding of the fundamentals of the var- ious types of corrosion	Demonstrate highly spe- cialised knowledge and skills in the fundamentals of corrosion	7	Explain in detail the chemical and electro- chemical phenomena involved in corrosion Compare the mechanisms of the different types of corrosion Explain how welding of dissimilar metals, and formation of carbides and intermetallic com- pounds during welding creates electrode po- tentials that may cause corrosion coupling (galvanic cells)	Discuss different corrosion protection methods		8
IWT	Apply advanced under- standing of the funda- mentals of the various types of corrosion	Demonstrate advanced knowledge and skills in the fundamentals of corrosion	6	Explain the chemical and electrochemical phenomena involved in corrosion Compare the mechanisms of the different types of corrosion	Select corrosion protection methods.		6
IWS	Apply understanding of the fundamentals of the various types of corro- sion	Demonstrate specialised knowledge and skills in the fundamentals of corro- sion	5	Describe the chemical and electrochemical phenomena involved in corrosion Classify the most common types of corrosion	Show examples of common corrosion protection methods		4

IWP	Apply basic knowledge of the fundamentals of the various types of cor- rosion.	Demonstrate fundamental knowledge and skills in recognising the corrosion types and in identifying possible protection meth-	4	Identify the major distinctive characteristics of the different types of corrosion. List the most common factors that can affect passive layers.	Illustrate with proper exam- ples the common protection methods.	Evaluate with a limited auton- omy a given welded fabrica- tion case study, and under guidance pointing out the most common methods to	3
	1051011.	ods.		Outline the most common methods to avoid pickling.		prevent corrosion.	

2.15 Stainless and heat resistant steels				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	12	9	5	2
Scope:	P3	P3	P3	P3
Effect of alloying elements on binary diagrams and phase composition	Х	Х	Х	Х
Systems Fe-Cr, Fe-Ni, Fe-Cr-Ni	Х	Х	-	-
Austenite and ferrite formers	Х	Х	Х	Х
Influence of nitrogen	Х	Х	Х	Х
Cr- and Ni-equivalent	Х	Х	Х	-
Schaeffler diagram, DeLong and other constitution diagrams	Х	Х	Х	-
Measuring of ferrite content (ISO 8249, ISO 17655)	Х	Х	-	-
t 12/8 weldability concept	Х	Х	-	-
Survey on stainless steels (fully austenitic, ferrite-containing steels, ferritic,				
martensitic, precipitation hardened, duplex stainless steels, chemically re-				
sistant, creep resistant, heat resistant steels, superferritic, supermartensitic				
and superaustenitic stainless steel e.g. duplex and lean duplex stainless				
steel) ISO/TR 15608, groups 7, 8, 9 and 10	Х	Х	Х	Х
Welding of stainless steels	Х	Х	Х	Х
Applicable welding processes	Х	Х	Х	Х
Weldability and selection of consumables	Х	Х	Х	Х
Choice of filler materials	Х	Х	Х	Х
Shielding and backing gases	Х	Х	Х	Х
Details of joint design	Х	Х	Х	Х
Heat treatment	Х	Х	Х	Х
Post-weld heat treatment (PWHT)	Х	Х	Х	Х
Passivation	Х	Х	Х	Х
Knife-line attack	Х	Х	-	-
475 °C-embrittlement	Х	Х	-	-
Weld decay (intergranular corrosion)	Х	Х	-	-
Pitting Index	Х	Х	Х	-

Mechanism of heat resistance	Х	Х	Х	Х
Oxidation resistance	Х	Х	Х	Х
Standards (ISO, CEN and National)	Х	Х	Х	Х

		2.15 S	tainless	and heat resistant steels – LEARNING OUTCOMES			
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE	Apply highly specialised understanding of the fundamentals of the various types of stain- less and heat resistant steels and their welda- bility, including filler metal choice	Demonstrate highly spe- cialised knowledge and skills in the weldability of stainless and heat re- sistant steels	7	 Explain in detail the structures of the various stainless steels; parent metal, HAZ and weld metal Infer the structure of a given high alloy weld from the Fe-Cr-Ni phase diagram Exemplify the rules and principles governing embrittlement phenomena Exemplify the rules and principles governing in detail corrosion phenomena Infer the structure of a given high alloy welding situation using the Fe-Cr-Ni phase diagram with various carbon contents Relate the effects of alloying elements to heat resistance Explain in detail the microstructural phenomena occurring in materials at high temperature Compare the properties of creep resistant and heat resistant steels. 	Decide on the choice of welding process and consumables for each type of stainless steel using different diagrams Predict the necessity for treatment after welding for given materials, con- sumables and welding processes	Appraise a case study and demon- strate which filler metals and process controls are re- quired to prevent embrittlement and solidification crack- ing of welded stain- less and heat re- sistant steels.	24
IWT	Apply advanced under- standing of the funda- mentals of the various types of stainless and heat resistant steels and their weldability, includ- ing filler metal choice	Demonstrate advanced knowledge and skills in the weldability of stainless and heat resistant steels	6	Explain the structures of the various stainless steels; parent metal, HAZ and weld metal Interpret the Fe-Cr-Ni phase diagram for a given high alloy weld Explain the rules and principles governing embrittlement phe- nomena	Select the welding pro- cess and consumables for each type of stain- less steel using different diagrams Select the treatment af- ter welding for given materials, consumables and welding processes	Appraise a case study and select ap- propriate filler met- als and process controls that are re- quired to prevent embrittlement and solidification crack-	18

				Explain the rules and principles governing in detail corrosion phenomena Interpret the Fe-Cr-Ni phase diagram for given high alloy welds		ing of welded stain- less and heat re- sistant steels.	
				with various carbon contents Compare heat resistance relative to the effects of alloying ele- ments			
				Explain the microstructural phenomena occurring in materials at high temperature			
				Compare the properties of creep resistant and heat resistant steels.			
				Explain the weldability of creep and heat resistant steels.			
IWS	Apply understanding of the fundamentals of the various types of stain- less and heat resistant steels and their welda- bility, including filler metal choice	Demonstrate specialised knowledge and skills in the weldability of stainless and heat resistant steels	5	Identify the structures of the various stainless steels Associate the various stainless steels with their behaviour dur- ing welding Describe the rules and principles governing corrosion phe- nomena Recognise the necessity of treatment after welding Describe the different treatments after welding.	Select the welding pro- cess and consumables for each type of stain- less steel using different diagrams	Evaluate a case study and, under limited guidance, select apropriate filler metals and pro- cess controls that are required to achieve require- ments for welded stainless and heat resistant steels.	10
IWP	Apply basic knowledge on fundamentals of the various types of stain- less and heat re- sistance steels and their weldability includ- ing the filler material choice.	Demonstrate fundamental knowledge and skills in the weldability of stain- less and heat resistance steels.	4	Outline the structures of the various stainless steels. Outline the most common welding processes and consuma- bles for each type of steel. Identify the main different treatments after welding. Interpret the appropriate ISO, CEN and National standards applied to Stainless and heat resistant steels. Compare the different types of stainless steel.		Appraise with lim- ited autonomy the application of ap- propriate welding process according to each material.	6

Qualification	IWE	IWT	IWS	IWP
Teaching hours	5	3	2	0
Scope:	P3	P3	P3	-
Wear:				
Different types of wear (hydrodynamic friction, reaction, layer wear, addesive wear, abrasive wear, fatigue wear, fretting, erosion, cavitation				
impact thermal dynamic)	x	x	x	_
Ruttering	X	X		
Wear tests	x	X		
Cladding:	Λ	~		
Cladding lavers and cladding processes (dilution)	X	X	x	_
loining clad steels	x	X	X	
Joint design and welding procedures in respect to the access to the joint	X	X		
Applications	X	X	x	
Standards	X	X	X	
l inings	Λ	~	~	
Welding of linings	X	x	x	_
loint design and welding procedures	X	X	X	_
Surfacing:	Λ	~	~	
Corrosion-resistant lavers	X	x	x	_
Wear-resistant layers	X	X	X	_
Coatings	Λ	~	~	
Coated steels	x	x	x	_
Galvanised steels (Si-content)	X	X	X	_
Painting	x	X	x	
Problems of ioining	x	X	-	-

2.16 Introduction to wear and protective layers – LEARNING OUTCOMES									
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL		
IWE	Apply highly specialised understanding of the fundamentals of wear and protective layers and the methods and materials used	Demonstrate highly spe- cialised knowledge and skills in the fundamentals of wear and protective lay- ers	7	Exemplify in detail wear situations involving each of the mechanisms for the different types of wear Compare the methods and results of tests to define wear resistance Explain in detail the precautions and proce- dures designed to avoid excessive wear	Produce weldment designs with protective layers Justify the selection of materi- als used in weldment design with protective layers	Appraise a case study and recommend protective layer solutions to achieve require- ments, providing alternatives where appropriate	10		

IWS	Apply understanding of the fundamentals of wear and protective lay- ers and the methods and materials used	Demonstrate specialised knowledge and skills in the fundamentals of wear and protective layers	4	Associate the results of tests with wear re- sistance Describe precautions and procedures de- signed to avoid excessive wear Recognise the advantages and disad-	Categorise the problems as- sociated with each method of applying protective layers Choose solutions for problems with protective layers	Evaluate a case study and, under limited guidance,select protective layer solutions to achieve requirements	4
				Identify wear situations that involve the mech- anisms of the different types of wear			
iwt	Apply advanced under- standing of the funda- mentals of wear and protective layers and the methods and materials used	Demonstrate advanced knowledge and skills in the fundamentals of wear and protective layers	6	Exemplify wear situations involving each of the mechanisms for the different types of wear Compare the methods and results of tests to define wear resistance Interpret the precautions and procedures de- signed to avoid excessive wear Compare the various techniques for applying protective layers Explain methods of resolving problems with different types of protective layer	Assess the selection of mate- rials used in weldment design with protective layers Predict the potential problems associated with different types of protective layer	Appraise a case study and se- lect protective layer solutions to achieve requirements, iden- tifying suitable alternatives where appropriate	6
				Compare in detail the various techniques for applying protective layers	Predict the potential problems associated with different types of protective layer Discuss methods of resolving problems with different types		

2.17 Cast irons and steels				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	2	2	2	0
Scope:	P3	P3	P3	-
Cast iron and cast steels – definition and classification ISO/TR 15608	Х	Х	Х	-
Survey of cast steels	Х	Х	Х	-
Survey of cast irons	Х	Х	Х	-
Weldability of cast iron and cast steels	Х	Х	Х	-
Applicable welding processes and procedures	Х	Х	Х	-
Filler materials	Х	Х	Х	-
Application and special welding problems	Х	Х	Х	-
Standards (ISO, CEN and National)	Х	Х	Х	-

			2.17 Ca	st irons and steels – LEARNING OUTCOMES	;		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE & IWT	Apply highly specialised understanding of the metallurgy of the differ- ent types of cast irons and steels, their applica- tion fields and weldabil- ity	Demonstrate highly spe- cialised knowledge and skills in the weldability of cast irons and steels	6	Explain in detail the Fe - C phase diagram with particular attention to carbon content over 2% Compare the different types of cast irons and steels, their chemical composition and crystal- lographic structures	Discuss the weldability prob- lems and applicable welding processes and types of con- sumable for the welding of cast irons.	Appraise a case study and recommend consumable types, preparation methods and thermal management pro- cedures to minimise hardness and prevent cracking for differ- ent types of cast iron and cast steel	4
IWS	Apply understanding of the metallurgy of the dif- ferent types of cast irons and steels, their applica- tion fields and weldabil- ity	Demonstrate specialised knowledge and skills in the weldability of cast irons and steels	5	Classify the different types of cast irons and steels	Categorise the weldability problems for given welding processes, consumables and types of cast irons and steels	Evaluate a case study and, under limited guidance, select recommend consumable types, preparation methods and welding controls that will improve the weldability of given types of cast iron and cast steel	4
IWP				NOT APPLICAVBLE			

2.18 Copper and copper alloys				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	2	2	1	0
Scope:	P3	P3	P3	-
Classification of copper and copper alloys ISO/TR 15608	Х	Х	Х	-
Physical and mechanical properties	Х	Х	Х	-
Deoxidation and weldability	Х	Х	Х	-
Applicable joining processes (welding, brazing, soldering, diffusion bond-				
ing)	Х	Х	Х	-
Filler materials	Х	Х	Х	-
Shielding and backing gases	Х	Х	Х	-
Application and special problems	Х	Х	Х	-
Standards (ISO, CEN and National)	Х	Х	Х	-
Quality control of the welded joint	Х	Х	Х	-

		2.	18 Copp	per and copper alloys – LEARNING OUTCOM	ES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE & IWT	Apply advanced under- standing of the metal- lurgy and the range of application and welda- bility of copper and cop- per alloys	Demonstrate advanced knowledge and skills in the metallurgy and welda- bility of copper and coper alloys	6	Explain the metallurgy of copper and copper alloys Interpret the weldability of given copper and copper alloys, including dissimilar joints Exemplify the range of application for copper and copper alloys.	Discuss applicable welding processes and types of con- sumable for copper and cop- per alloys	Appraise a case study and recommend the necessary heat inputs filler materials and shielding gases to achieve quality requirements in copper and copper alloy for a selec- tion of joining processes	4
IWS	Apply understanding of the metallurgy and the range of application and weldability of copper and copper alloys	Demonstrate specialised knowledge and skills in the metallurgy and welda- bility of copper and coper alloys joints	5	Classify copper and copper alloy weldability Associate copper and copper alloys with spe- cific applications	Select applicable welding pro- cesses and types of consum- able for copper and copper al- loys.	Evaluate a case study and, under limited guidance, select appropriate filler material and shielding gas to achieve qual- ity requirements in copper and copper alloy for a given joining process.	2
IWP				NOT APPLICABLE			

2.19 Nickel and nickel alloys					
	Qualification	IWE	IWT	IWS	IWP
	Teaching hours	2	1	1	0
Scope:		P3	P3	P3	-
Classification of nickel and nickel alloys ISO/TR 15608		Х	Х	Х	-
Weldability of nickel and nickel alloys		Х	Х	Х	-
Applicable welding processes and filler materials		Х	Х	Х	-
Shielding and backing gases		Х	Х	Х	-
Welding problems (hot cracking) and prevention		Х	Х	Х	-
Quality control of the welded joint		Х	Х	Х	-
Application and special problems		Х	Х	Х	-
Standards (ISO, CEN and National)		Х	Х	Х	-

		2	2.19 Nicl	el and nickel alloys – LEARNING OUTCOME	S		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE	Apply highly specialised understanding of the metallurgy, the range of application and the weldability of nickel and nickel alloys	Demonstrate highly spe- cialised knowledge and skills in the metallurgy and weldability of nickel and nickel alloys	7	Explain in detail the metallurgy of nickel and nickel alloys Interpret the weldability of various nickel and nickel alloy materials Exemplify nickel and nickel alloys applications	Discuss applicable welding processes and types of consum- able for nickel and nickel alloys	Appraise a case study and recom- mend the process, consumable type, preparation method and shielding gas to avoid hot cracking and solid-state microcracks in welding of various nickel and nickel alloys, providing al- ternatives where necessary	4
IWT	Apply advanced under- standing of the metal- lurgy, the range of appli- cation and the weldabil- ity of nickel and nickel alloys	Demonstrate advanced knowledge and skills in the metallurgy and welda- bility of nickel and nickel alloys	6	Explain nickel and nickel alloy weldability Compare examples of nickel and nickel alloys applications	Select applicable welding processes and types of consum- able for nickel and nickel alloys	Appraise a case study and select the process, consumable type, preparation method and shielding gas to achieve quality requirements for selected nickel alloys in a given application	2
IWS	Apply understanding of the metallurgy, the range of application and the weldability of nickel and nickel alloys	Demonstrate specialised knowledge and skills in the metallurgy and welda- bility of nickel and nickel alloys	5	Classify nickel and nickel alloy weldability Recognise examples of nickel and nickel al- loys applications	Select applicable welding processes and types of consum- able for nickel and nickel alloys.	Evaluate a case study and, under lim- ited guidance, select the process, con- sumable type, preparation method and shielding gas to achieve quality requirements for a given nickel alloy in a given application	2
IWP				NOT APPLICABLE			

Qualification	IWE	IWT	IWS	IWP
Teaching hours	6	4	2	2
Scope:	P3	P3	P3	P3
Classification of AI and AI-alloys (pure, cold work alloys, heat treatable) ISO/TR 15608 Weldability of AI and AI-alloys (HAZ softening, porosity and hot cracking,	х	х	x	х
cracking diagrams, distortion)	Х	Х	Х	Х
Oxide layer cleaning (cathodic cleaning, trailing and trailing shield)	Х	Х	Х	Х
Applicable welding processes	Х	Х	Х	Х
Filler materials (choice, storage and handling)	Х	Х	Х	Х
Shielding and backing gases	Х	Х	Х	Х
Design details	Х	Х	Х	Х
Joint preparation	Х	Х	Х	Х
Application and special problems (lightweight structures, cryogenic use)	Х	Х	Х	Х

		2.20	Aluminiu	um and aluminium alloys – LEARNING OUTC	OMES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE	Apply highly specialised understanding of the metallurgy, the range of application and the weldability of nickel and nickel alloys	Demonstrate highly spe- cialised knowledge and skills in the metallurgy and weldability of nickel and nickel alloys	7	Explain in detail the metallurgy of aluminium and aluminium alloys Interpret the weldability of various aluminium and aluminium alloys, including dissimilar joints Exemplify aluminium and aluminium alloy ap- plication	Discuss applicable weld- ing processes and types of consumable for alumin- ium and aluminium alloys.	Appraise a case study and recom- mend the process, consumable type, preparation method and shielding gas to avoid hot cracking and solid-state microcracks in welding of various aluminium al- loys, providing alternatives where necessary	12
IWT	Apply advanced under- standing of the metal- lurgy, the range of appli- cation and the weldabil- ity of nickel and nickel alloys	Demonstrate advanced knowledge and skills in the metallurgy and welda- bility of nickel and nickel alloys	6	Explain aluminium and aluminium alloy weld- ability including dissimilar joints Compare examples of aluminium and alumin- ium alloy applications	Select applicable welding processes and types of consumable for alumin- ium and aluminium alloys	Appraise a case study and select the process, consumable type, preparation method and shielding gas to achieve quality require- ments for selected aluminium al- loys in a given application	8
IWS & IWP	Apply basic knowledge of the metallurgy, the range of application and the weldability of alu- minium and aluminium alloys.	Demonstrate fundamental knowledge and skills in the metallurgy and welda- bility of nickel and nickel alloys	4	Classify aluminium and aluminium alloy weld- ability Recognise examples of aluminium and alu- minium alloy applications	Select applicable welding processes and types of consumable for alumin- ium and aluminium alloys.	Give assistance to the identifica- tion, storage and handling of con- sumables. Give assistance to the application of welding processes for AI and AI-alloys	4

Qualification	IWE	IWT	IWS	IWP
Teaching hours	3	2	1	0
Scope:	P3	P3	P3	-
Titanium, Classification according to ISO/TR 15608	Х	Х	Х	-
Magnesium. Classification according to ISO/TR 15608	Х	Х	Х	-
Tantalum	Х	-	-	-
Zirconium	Х	-	-	-
Applicable welding processes and filler materials	Х	Х	Х	-
Special problems	Х	Х	-	-

		2.21 Tit	anium a	nd other metals and alloys – LEARNING OUT	COMES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE	Apply highly specialised understanding of the metallurgy, application fields and weldability of titanium, magnesium, tantalum and zirconium	Demonstrate highly spe- cialised knowledge and skills in the metallurgy and weldability of titanium and other special metals and alloys	7	Explain in detail the metallurgy of the specified metals and alloys Interpret the weldability of these metals	Discuss appropriate welding processes, consumables and applications for given metals and alloys	Appraise a case study and recommend the process and consumable type to achieve weld quality requirements for various applications of tita- nium and other special metals and alloys	6
IWT	Apply advanced under- standing of the metal- lurgy, application fields and weldability of tita- nium, magnesium, tan- talum and zirconium	Demonstrate advanced knowledge and skills in the metallurgy and welda- bility of titanium and other special metals and alloys	6	Explain the metallurgy of the specified metals and alloys Compare the weldability of the specified met- als	Select appropriate welding processes, consumables and applications for given metals and alloys	Appraise a case study and se- lect the process and consum- able type to achieve quality re- quirements for selected spe- cial metals and alloys in a given application	4
IWS	Apply understanding of the metallurgy, applica- tion fields and weldabil- ity of titanium, magne- sium, tantalum and zir- conium	Demonstrate specialised knowledge and skills in the metallurgy and welda- bility of titanium and other special metals and alloys	5	Identify the welding metallurgy of the specified metals Classify the weldability of the specified metals	Select appropriate welding processes, consumables and applications for given metals and alloys	Evaluate a case study and, under limited guidance, select the process and consumable type to achieve quality re- quirements for a given special metals or alloy in a given ap- plication	2
IWP				NOT APPLICABLE			

Qualification	IWE	IWT	IWS	IWP
Teaching hours	4	3	2	1
Scope:	P3	P3	P3	P3
Fundamentals of joining dissimilar materials Use of the Schaeffler / De Long / WRC diagram for welding dissimilar met-	Х	Х	Х	Х
als	Х	Х	Х	-
Choice of processes	Х	Х	Х	Х
Effect of dilution, buttering	Х	Х	Х	Х
Consumables	Х	Х	Х	Х
carbon migration)	Х	Х	-	-
In service failures (thermal fatigue, disbonding)	Х	X	-	-
Joining high alloyed steel and mild steel	Х	Х	Х	Х
Joining stainless steel and mild steel	Х	Х	Х	Х
Joining Austenitic stainless steel and martensitic stainless steel	Х	Х	Х	-
Joining Austenitic stainless steel and ferritic stainless steel	Х	Х	Х	-
Joining Austenitic stainless steel and duplex stainless steel	Х	Х	Х	-
Joining Cu-Ni-alloys with mild steel/stainless steel	Х	Х	Х	-
Joining Ni-alloys with mild steel	Х	Х	Х	-
Joining stainless steel and copper alloys	Х	Х	Х	-
Joining steel and AI / AI alloys	Х	Х	Х	-
Joining Cu and AI / AI alloys	Х	Х	-	-
Joining Ni and Cu	Х	Х	-	-

2.22 Joining dissimilar materials – LEARNING OUTCOMES											
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL				
IWE	Apply highly specialised understanding of the principles of joining dis- similar materials and the problems involved	Demonstrate highly spe- cialised knowledge and skills in joining dissimilar materials	7	Explain in detail the metallurgical and welda- bility aspects involved when joining dissimilar materials Infer welding metallurgical phases from Schaeffler / De Long /WRC diagram Consider the limitations of using Schaeffler / De Long /WRC diagrams	Discuss welding methods that can resolve metallurgical problems Justify the choice of filler ma- terial for dissimilar metal welds	Appraise a case study and recommend the process and consumable type to achieve weld quality requirements for various applications of dissim- ilar metal welds	8				

IWT	Apply advanced under- standing of the princi- ples of joining dissimilar materials and the prob-	Demonstrate advanced knowledge and skills in joining dissimilar materi-	6	Explain the metallurgical and weldability aspects involved when joining dissimilar materials	Select welding methods that can resolve metallurgical problems	Appraise a case study and se- lect the process and consum- able type to achieve quality re- quirements for selected dis-	6
	lems involved	als		Interpret Schaeffler / De Long / WRC diagram	Select the correct filler mate- rial for dissimilar metal welds	similar metal welds in a given application	
IWS	Apply understanding of the principles of joining dissimilar materials and the problems involved	Demonstrate specialised knowledge and skills in joining dissimilar materi- als	5	Identify the weldability aspects involved when joining dissimilar materials Associate specific welding methods with re- duction in metallurgical problems	Choose appropriate consum- ables based on given Schaeffler / De Long /WRC di- agrams	Evaluate a case study and, under limited guidance, select the process and consumable type to achieve quality re- quirements for a given dissim- ilar metal weld in a given ap- plication	4
IWP	Apply basic knowledge about of the principles of joining dissimilar ma- terials and the problems involved.	Demonstrate fundamental knowledge and skills in joining dissimilar materi- als	4	Outline the most common weldability aspects involved when joining dissimilar materials	Illustrate with examples weld- ing methods that decrease metallurgical simple problems	Give assistance to the appli- cation of welding processes for dissimilar joining.	2

2.23 Destructive testing of materials and welded joints											
	Qualification	IWE	IWT	IWS	IWP						
	Teaching hours	14	14	8	3						
Scope:		P3	P3	P3	P3						
Destructive testing											
Tensile tests		Х	Х	Х	Х						
Bend tests		Х	Х	Х	Х						
Impact tests		Х	Х	Х	Х						
Hardness tests		Х	Х	Х	Х						
Fatigue tests		Х	Х	Х	Х						
Fracture mechanics tests (CTOD, etc.)		Х	Х	Х	-						
Creep tests		Х	Х	-	-						
Corrosion tests		Х	Х	-	-						
Chemical analysis		Х	Х	-	-						
Determination of hydrogen content		Х	Х	Х	-						
Metallographic examination of materials and their	welded joint										
Preparation of specimens (grinding, polishing, etc	hing)	Х	Х	Х	-						
Equipment for preparation (manual, mechanical, a	utomatic)	Х	Х	Х	-						
Microscopes for examination (optical, electron)		Х	Х	Х	-						
Microscopic and macroscopic examination of welc	ls	Х	Х	Х	Х						
Standards for testing		Х	х	х	-						
Laboratory exercises for IWE / IWT	6 hours from 14										
Laboratory exercises for IWS -	4 hours from 8										
Laboratory exercises for IWP -	1 hour from 3										

		2.23 Destruct	ve testi	ng of materials and welded joints – LEARNIN	IG OUTCOMES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE & IWT	Apply advanced under- standing of the funda- mental aspects of test- ing materials with partic- ular reference to welded test pieces	Demonstrate advanced knowledge and skills in destructive testing of ma- terials and welded joints	6	Explain the purpose of destructive testing and the limitations of the data generated Compare the major testing methods and the parameters measured by each of them	Justify the need for special testing to be specified	Recommend special testing to achieve specified quality re- quirements Undertake destructive testing tasks in accordance with given schedules	28
IWS	Apply understanding of the fundamental as-	Demonstrate specialised knowledge and skills in	5	Identify the objectives of destructive testing and the limitations of the data generated	Show when and why special testing needs to be specified	Select appropriate special testing to achieve specified quality requirements	16

IAB-252r5-19

	pects of testing materi-	destructive testing of ma-		Describe the major testing methods and the			
	als with particular refer-	terials and welded joints		parameters measured by each of them		Undertake destructive testing	
	ence to welded test					tasks in accordance with given	
	pieces					schedules	
	Apply basic knowledge	Demonstrate fundamental		Outline the most common reasons for de-	Compare destructive testing	Poviow with limited autonomy	
0	of the fundamental as-	knowledge and skills in		structive testing.	compare destructive testing,	tests reports and test results	
IWP	pects of testing materi-	reviewing destructive	4		jostivos and limitations of the	Carry out with limited auton	6
	als with reference to	tests reports and be able		List the major testing methods and the pa-	deta generated:	carry out with inflited auton-	
	welded test pieces	to perform fracture tests.		rameters to be measured.	uala generaled,	only fracture tests.	

Module 2 – Materials and their behaviour during welding

Module 2	IN	/E	IV	VT	IV	/S	IWP		
	MT	P1 *	MT	P1 *	MT	P1 *	MT	P1 *	
Teaching Hours	115	33	96	31	56	16	23	10	

* P1 = Part 1, Figures under P1 are given for the Standard Route (see 4.1)

Module 3: Construction and design

Characterization of the general description of Module 3 – Construction and design, describing the Qualification descriptors in terms of Knowledge – K, Skills – S, Competences - C for each IIW welding coordination qualification

COMPETENCE UNIT	3: CONSTRUCTION AND DESIG	3N					
QUALIFICATION	KNOWLEDGE	SKILLS	COMPETENCES	EQF LEVEL (EQF L)	TEACH- ING HOURS	WORKLOAD (WL)	ECVET POINTS
INTERNATIONAL WELDING ENGINEER	Highly specialized knowledge (able to deduce, detail and ex- plain) and critical assessment of the theory, principals con- cerning the design and con- struction related to welding technology.	Highly specialized skills including critical evaluation (able to predict and deduce), to define/determine the best technical and economical solutions that shall be applied in terms of metal fabrication and design when applying welding technol- ogy in complex and unpredictable condi- tions.	Manage in detail the construction and design of welded products applications in a highly complex context. Act as the responsible person for the defini- tion of the welding personnel tasks.	7	62	124	15
INTERNATIONAL WELDING TECHNOLOGIST	Advanced knowledge (able to deduce, detail and ex- plain) and critical assessment of the theory, principals con- cerning the design and con- struction related to welding technology.	Advanced skills including critical evalua- tion (able to predict and deduce), to de- fine/determine the best technical and economical solutions that shall be ap- plied in terms of metal fabrication and design when applying welding technol- ogy in complex and unpredictable condi- tions.	Manage in detail the construction and design of welded products applications in a highly complex context. Act as the responsible person for the defini- tion of the welding personnel tasks.	6	44	88	10
INTERNATIONAL WELDING SPECIALIST	Specialized and factual knowledge (able to understand and iden- tify) of the theory and principles concerning the design and con- struction related to welding technology.	Specialised range of cognitive and prac- tical skills which will allow choosing the proper technical and economical solu- tions in terms of metal fabrication and design when applying welding technol- ogy on common/regular problems.	Manage and supervise construction and de- sign of welded products applications in un- predictable modifications. Act as the responsible person for supervise the welding personnel tasks.	5	24	36	5
INTERNATIONAL WELDING PRACTITIONER	Factual and theoretical knowledge (basic understand) of the the- ory and principles concerning the design and construction re- lated to welding technology.	Range of cognitive and practical skills re- quired to identify/choose the proper tech- nical and economical solutions in terms of metal fabrication and design when ap- plying welding technology on basic and specific problems.	Self-manage the construction and design of welded products applications usually predict- able but subject to changes. Will act as the responsible person for super- vise the welding personnel tasks.	4	6	13	0,5

Qualification	IWE	IWT	IWS	IWP
Teaching hours	4	4	2	0
Scope:	P1	P1	P3	-
Structural elements (cables, bars, beams, plates, slabs, shells)	Х	Х	Х	-
Theory of forces	Х	Х	Х	-
Combination and resolution of forces	Х	Х	Х	-
Equilibrium of forces and torques	Х	Х	Х	-
Bearings, constraints and basic types of connections	Х	Х	Х	-
Equilibrium of structural systems	Х	Х	Х	-
Statically determinate and indeterminate systems	Х	Х	Х	-
Stress in structural systems resulting from external actions	Х	Х	Х	-
Relationship between external loads and internal forces	Х	Х	-	-
Calculation and determination of the internal forces and moments of simple				
statically determinate systems	Х	Х	-	-

		3.1 Ba	asic the	ory of structural systems – LEARNING OUTCOM	ES					
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL			
IWE & IWT	Apply advanced under- standing of the effect of external loads on struc- tures, the types of structural systems and the relationship be- tween external loads and internal forces.	Demonstrate advanced knowledge and skills in explaining the conditions of equilibrium of structural systems and detailing the shearing force and bend- ing moment of simple statically determinate sys- tems	6	Explain in detail, the composition of forces, reso- lution of forces and the equilibrium conditions and the equilibrium of structural systems Explain in depth bearings, constraints and the basic types of connections Explain in depth the difference between a stati- cally determinate and a statically indeterminate system	Calculate internal forces and moments of simple statically determinate sys- tems Interpret, using sketches, the shearing force and bending moment diagram of simple statically deter- minate systems	Appraise, autonomously, a noncomplex structural system case study to verify if the de- sign and calculations used are acceptable	8			
IWS	Apply specialised un- derstanding of the re- quirements and gain basic knowledge of the effect of external loads on structures, the types of structural systems and the relationship be- tween external loads and internal forces	Demonstrate specialised knowledge and skills in point out the composition and resolution of forces, identifying the equilibrium in structural systems	5	Outline the composition and resolution of forces Outline the equilibrium of structural systems Identify the equilibrium conditions	Recognise bearings, con- straints and the basic types of connections.	Evaluate a given basic struc- tural system case study and, under limited guidance, rec- ognise the safety factors	3			
IWP	NOT APPLICABLE									

Qualification	IWE	IWT	IWS	IWP
Teaching hours	6	6	4	0
Scope:	P1	P1	P3	-
Types of stresses (normal stress, shear stress)	Х	Х	Х	-
Types of deformation (axial strain, shear strain)	Х	Х	Х	-
Stress-strain relationship, yielding theories	Х	Х	Х	-
Elastic and plastic deformation	Х	Х	Х	-
Young's modulus, shear modulus, transverse contraction coefficient	Х	Х	Х	-
Characteristic material properties	Х	Х	Х	-
Different stresses resulting from internal forces and moments	Х	Х	Х	-
Different types of section properties	Х	Х	Х	-
Cross section variables	Х	Х	Х	-
Calculation of stresses	Х	Х	-	-
Limit states of failures: ductile, brittle, fatigue, creep.	Х	Х	-	-

		3.2 Funda	amental	s of the strength of materials – LEARNING O	UTCOMES					
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL			
IWE & IWT	Apply advanced un- derstanding of the principles governing the behaviour of metal- lic structures under loading.	Demonstrate advanced knowledge and skills in explaining the stress- strain relationships and detailing the stresses re- sulting from internal forces and moments	6	Explain the different types of stresses and different types of deformation Explain the determination of characteristic material properties Detail the stresses resulting from internal forces and moments	Calculate the different types of cross section variables and nominal stresses in sections	Appraise, autonomously, a noncomplex structural system case study, to analyse its specific application and verify that the calculation methods and results are acceptable	12			
IWS	Apply specialised un- derstanding of the re- quirements and gain basic knowledge of the principles governing the behaviour of metallic structures under load- ing.	Demonstrate specialised knowledge and skills in outlining the different types of stresses and de- formations in a metallic structure under a certain load	5	Outline different types of stresses and defor- mation Outline the stress-strain relationships	Identify the stresses resulting from internal forces and mo- ments	Evaluate a given basic struc- tural system case study and, under limited guidance, iden- tify the safety factors	6			
IWP		NOT APPLICABLE								

3.3 Joint design for Welding and Brazing				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	4	4	3	2
Scope:	P1	P1	P3	P3
Introduction (importance of welding joint design and groove shapes, influ-				
ence on welding stresses and distortion)	Х	Х	Х	Х
Types of welded/brazed joints (ISO 9692, CEN, national)	Х	Х	Х	Х
Importance of weld joint design and groove shapes, types of welded joints,				
design of welded joints	Х	Х	Х	Х
Classification of groove shapes (by material type, thickness, welding pro-				
cess, accessibility)	Х	Х	Х	Х
Tolerance requirements (ISO 13920)	Х	Х	Х	Х
Welding symbols on drawings, symbols for groove shapes	Х	Х	Х	Х
Symbolic representation of welded, brazed and soldered joints according				
to ISO 2553	Х	Х	Х	Х
National Standards	Х	Х	Х	Х
	Λ			

		3.3 Joi	nt desig	n for Welding and Brazing – LEARNING OUT	COMES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE & IWT	Apply advanced under- standing to be able to design and draw weld details related to a given material, wall thickness, accessibility, loading, welding process, weld- ing position, welding symbols, available equipment, tolerances.	Demonstrate advanced knowledge and skills in designing weld details, us- ing appropriate standards and applying correct weld- ing and brazing symbols	6	Detail different types of welded joints, accord- ing to ISO 9692 or national standards	Apply appropriate weld sym- bols to drawings according to ISO 2553 or national stand- ards Interpret appropriate stand- ards to determine the shape and size of weld required	Appraise, autonomously, a certain welded fabrication case study, analysing it to de- fine the type and size of weld Produce a drawing to com- municate the weld design re- quired to achieve a specified performance	8
IWS	Apply specialised un- derstanding of the re- quirements and gain basic knowledge of the of the design of weld de- tails related to a given material, wall thickness, accessibility, loading,	Demonstrate specialised theoretical knowledge and practical skills in applying the appropriate standards for weld joints and using appropriate welding and brazing symbols	5	Identify different types of welded joints, ac- cording to ISO 9692 or national standards Identify weld symbols according to ISO 2553 or national standards	Interpret, correctly, weld sym- bols to identify the shape, size and position of joints	Evaluate, under limited guid- ance, a given welded fabrica- tion case study, identifying in the fabrication drawings the welding symbols and relating them to the specific weld joints.	6

								_
	welding process, weld- ing position, welding symbols, available equipment, tolerances.							
IWP	Apply basic knowledge of the design of weld details related to a given material, wall thickness, accessibility, loading, welding pro- cess, welding position, welding symbols, avail- able equipment, toler- ances.	Demonstrate basic theo- retical knowledge and practical skills in applying the appropriate standards for weld joints and using appropriate welding and brazing symbols	4	Outline different types of welded and brazed joint, according to ISO 9692, CEN, and na-tional standards.	Make a proper use of welded joints symbols in line to the material properties e.g. chem- ical composition, thickness, and weld joint Choose design symbol ac- cording to the brazing, solder- ing and welding process used	Evaluate with a limited auton- omy a given welded fabrica- tion case study, and under guidance identifying in the fabrication drawings the weld- ing symbols and relating them to the specific weld joints	5	

3.4 Basics of weld design				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	6	6	4	0
Scope:	P3	P3	P3	-
Types of stresses in welded joints (nominal stress, hot spot stress, notch				
stress)	Х	Х	Х	-
Stresses in butt welds, stresses in fillet welds	Х	Х	Х	-
Calculation of cross section variables of welded joints	Х	Х	Х	-
Determination of nominal stresses in single welded joints	Х	Х	Х	-
Determination of reference values of stresses due to multi-axial stressing. Determination of design resistance of arc-welded and resistance-welded	Х	Х	-	-
joints	Х	Х	-	-
Worked examples of calculation of nominal stresses in welded joints	Х	Х	-	-
Principal stresses, nominal/normal stress, shear stress, Mohr circle	Х	Х	-	-
Stress concentration, factor-k, SCF elastic, strain concentration factor Constraint factor. Stress calculation by finite elements method. Experi-	Х	X	-	-
mental elasticity: strain gauges, photoelasticity, method Moiré, holography	Х	X	-	-

	3.4 Basics of weld design – LEARNING OUTCOMES									
ACTIONS/ PERFORMANCE ACHIEVEMENTS CRITERIA		EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL				
IWE & IWT	Apply advanced and de- tailed understanding of	Demonstrate advanced knowledge and skills in calculating internal forces	6	Explain in depth the different types of stresses in welded joints	Calculate in detail simple welded joints, nominal	Appraise, autonomously, a certain welded fabrication case study, analysing it and	12			

				1				
	the relationship be- tween external loads on structures, internal forces and the stresses induced especially with regards to welds	of simple welded joints, nominal stress and com- bined stresses in welds			stresses and stresses in welds	combined	calculating simple welded joints, nominal and combined stresses in weld joints. Appraise, autonomously, al- ternative solutions for a cer-	
							tain welded fabrication case study, giving information if needed.	
IWS	Apply specialised un- derstanding of the re- quirements and gain basic knowledge of the relationship between external loads on struc- tures, internal forces and the stresses in- duced especially with regards to welds.	Demonstrate specialised theoretical knowledge and practical skills in outlining the different types of stresses in welded joints and describing simple weld joints and cross sec- tions for welded joints	5	Identify the different types of stresses in welded joints. Describe simple welded joints Describe cross sections for welded joints			Evaluate, under limited guid- ance, a given welded fabrica- tion case study, and identify simple joints and cross sec- tions welded joints.	6
IWP				NOT APPLICALE				

3.5 Behaviour of welded structures under different types of load	ding			
Qualification	IWE	IWT	IWS	IWP
Teaching hours	4	2	1	0
Scope:	P3	P3	P3	-
Static strength	Х	Х	Х	-
Elevated temperature strength	Х	Х	Х	-
Low-temperature strength	Х	Х	-	-
Creep resistance	Х	Х	-	-
Impact behaviour	Х	Х	-	-
Influence of notches and weld defects	Х	Х	Х	-
Types of failure (ductile fracture, fatigue fracture, brittle fracture,				
lamellar tearing)	Х	Х	Х	-
Selection of steel quality groups, Z-quality	Х	Х	-	-
Typical data for common steels	Х	Х	-	-
Use of standards and specifications	Х	Х	-	-
Collecting and processing experimental stress/strain data	Х	-	-	-

		3.5 Behaviour of we	Ided str	uctures under different types of loading – LE	ARNING OUTCOMES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE	Apply highly specialised understanding in detail of the different types of loading and the influ- ence of ambient condi- tions on structures.	Demonstrate highly spe- cialised knowledge and skills in selecting and pre- dicting the appropriate materials that meet strength/temperature re- quirements	7	Explain in depth the requirements according different types of loading and temperatures Detail different types of fracture	Deduce for a certain applica- tion the materials that meet strength/temperature require- ments Predict appropriate materials for use in specific applica- tions.	Appraise, with full autonomy, a certain welded fabrication case study, analysing it, de- fining or checking if the mate- rials that will be used in the fabrication are according to the requirements. Appraise, with full autonomy, if needed alternative solutions for a certain welded fabrica- tion case study, giving infor- mation.	8
IWT	Apply advanced under- standing of the different types of loading and the influence of ambient conditions on struc- tures.	Demonstrate advanced knowledge and skills in selecting appropriate ma- terials or group of materi- als that meet strength/temperature re- quirements	6	Explain the requirements according to differ- ent types of loading and temperatures Define different types of fracture	Select appropriate materials for specific applications using design data and appropriate calculations. Select groups of materials which meet strength / temper- ature requirements	Appraise, autonomously, a given welded fabrication case study, analysing its specific application and recommend- ing or checking if the materi- als that will be used in the fabrication are according to the requirements.	4

						Appraise, autonomously, al- ternative solutions, if needed, for a given welded fabrication case study.				
IWS	Apply specialised un- derstanding of the re- quirements and gain basic knowledge of the different types of load- ing and the influence of ambient conditions on structures.	Demonstrate specialised knowledge and skills in identifying groups of ma- terials which meet strength and temperature requirements	5	Outline the requirements for the construction according to different types of loading and temperatures Recognise the various types of fracture Identify globally groups of materials which meet strength / temperature requirements.	Select appropriate material groups to meet specified re- quirements	Evaluate, with reduced direc- tion, a given welded fabrica- tion case study, identifying the materials groups that meet the construction require- ments.	1,5			
IWP		NOT APPLICALE								

3.6 Design of welded structures with predominantly static loading	ng			
Qualification	IWE	IWT	IWS	IWP
Teaching hours	8	5	3	2
Scope:	P3	P3	P3	P3
Steel constructions including lightweight structures Structural details e.g. (stiffeners, knots, columns, base- and cap-plates, re- inforced structures, supports, frame-corners, frame structures, trusses, nodal joints, weld connections, braces / bracing, lattice work structures, etc.)	x x	x	x	-
Use of different types of welds related to joint types Use of standards and specifications Worked examples	X X X	X X X	X X -	X X -

	3.6 Design of welded structures with predominantly static loading – LEARNING OUTCOMES											
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL					
IWE	Apply highly specialised understanding how to design and calculate joints and relevant de- tails of welded metallic structures	Demonstrate highly spe- cialised knowledge and skills explaining and cal- culating appropriate weld geometry, relevant weld stresses and the ad- vantages and disad- vantages of the different	7	Explain in depth the principles of design of dif- ferent connection zones Detail the stresses in frames Detail the stresses in welds in frames based on known or predicted forces	Calculate the relevant weld stresses and the appropriate weld geometry and position to maximise integrity and safety	Appraise, with full autonomy, a certain case study of welded metallic structure fabrication, analysing it and calculating the weld geometries and rele- vant weld stresses.	16					

-								
ſ			types of welds in welded		Explain in depth the advantages and disad-		Appraise, with full autonomy,	
			structures with static load-		vantages of different types of welds		alternative solutions, if	
			ing				needed, for	
							a certain case study of welded	
							metallic structure fabrication,	
ļ							giving information.	
							Appraise, autonomously, a	
					Explain the design of different connection		given case study of welded	
					zones		metallic structure fabrication,	
		Apply advanced under-	Demonstrate advanced			Using specified material data	analysing it and nominating	
		standing how to design	knowledge and skills in		Define the stresses in frames	calculate the relevant weld	the relevant weld stresses.	
	IWT	ioints and relevant de-	explaining the design of	6		stresses and the appropriate		10
		tails of welded metallic	welded structures with	Ũ	Nominate the stresses in welds in frames	weld geometry and position to	Appraise, autonomously, al-	
		structures	static loading			maximise integrity and safety	ternative solutions, if needed,	
					Explain the advantages and disadvantages of		for a certain case study of	
					different types of welds		welded metallic structure fab-	
					, , , , , , , , , , , , , , , , , , ,		rication,	
ŀ							giving information.	
		Apply specialised un-	specialised un-		Recognise the significance of appropriate		Evaluate, under limited quid-	
		derstanding of the re-		ance, a given case study of				
		quirements and gain	Demonstrate specialised		Describe the educatories and disadventeese	Using specified material data,	welded metallic structure fab-	
	IMC	basic knowledge	the feature that influence	F	of different types of welds	of relevent wold stresses for a	rication, identifying the differ-	4 5
	1005	of the identification of	the performance of a wold	Э	of different types of weids	of relevant weld stresses for a	ent connections zones and	4,5
		joints and relevant de-	ine performance of a weld		Identify different connection zones	given weld geometry and po-	verify that the weld geometry	
		tails of welded metallic	Joint's with static loading		identity different connection zones.	SILION	is appropriate to maximise in-	
		structures.			Identify stresses in structural details		tegrity and safety	
ł							Evaluate with a limited auton	
			Demonstrate theoretical				omy a given welded metallic	
		Apply basic knowledge	knowledge and practical			Check simple metallic struc-	structure fabrication case	
		of identification of joints	skills in the factors that in-		Outline the most common advantages and	tures and joint geometrical	study and under supervision	
	IWP	and relevant details of	details of lic struc-		disadvantages of different welded joint types	form/shape_surface and	identifying the differences be-	4
		welded metallic struc-			and profiles if static loading	types to the static loading	tween similar profiles and the	
		tures.	loading			types to the statio louding	influence of the geometrical	
			locality.				shape of the surface	

Qualification	IWE	IWT	IWS	IWP
Teaching hours	8	5	2	1
Scope:	P3	P3	P3	P3
Types and variables of cyclic loading	Х	Х	Х	Х
Statistical stress analysis on real structures	Х	Х	-	-
S-N diagram	Х	Х	Х	-
Stress collective	Х	Х	-	-
Fatigue strength (low cycle, and others)	Х	Х	Х	Х
Effect of mean stress including residual stresses	Х	Х	-	-
Effect of stress range	Х	Х	-	-
Stress distribution	Х	Х	Х	Х
Influence of notches	Х	Х	Х	Х
Influence of weld imperfections	Х	Х	Х	Х
Fatique improvement technique (needle peening, TIG dressing, burr grind-				
ing, hammering, stress relieving, etc.)	Х	Х	Х	Х
Standards ISO. CEN and National	Х	Х	Х	Х
Palmgren-Miner rule	Х	-	-	-
Classification of weld joints	X	-	-	-

		3.7 Behaviour	of welde	ed structures under cyclic loading – LEARNI	NG OUTCOMES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE	Apply highly specialised understanding of the de- velopment of fatigue, calculation of load cy- cles, the influence of notches and their avoid- ance.	Demonstrate highly spe- cialised knowledge and skills explaining S-N Dia- gram, calculating the stress ratio and the influ- ence of notches and weld defects	7	Explain in depth the methods of counting load cycles Detail the influence of notches and weld de- fects Explain in depth the methods for improving fa- tigue performance	Draw and interpret an S-N di- agram. Calculate stress ratio	Appraise, with full autonomy, a certain welded metallic structure fabrication case study, analysing it, and justify- ing the methods to be applied to improve its fatigue perfor- mance	16
IWT	Apply advanced under- standing of the develop- ment of fatigue, calcula- tion of load cycles, the influence of notches and their avoidance	Demonstrate advanced knowledge and skills in using S-N diagrams and defining the influence of notches and weld defects	6	Explain the methods applied to welds for improved fatigue performance Define the influence of notches and weld defects.	Draw and use an S-N dia- gram, and define its limitations with respect to accuracy	Appraise, autonomously, a given case study of welded metallic structure fabrication, analysing it and defining the methods that will improve its fatigue performance.	10
IWS	Apply specialised un- derstanding of the re- quirements and gain basic knowledge of the fatigue and the influence	Demonstrate specialised knowledge and skills in describing the influence of notches and weld defects	5	Describe the influence of notches and weld defects. Recognise possible modifications to welds for improve performance	Use an S-N diagram	Evaluate, under limited guid- ance, a given case study of welded metallic structure fab-	3

International Welding Engineers, Technologists, Specialists and Practitioners © Copyright EWF - Approved: January 2019

IAB-252r5-19

	of notches and their avoidance	and how to improve the fa- tigue performance of weldments under cycle loading				rication, identifying the possi- ble modifications to improve fatigue performance.	
IWP	Apply basic knowledge of fatigue and the influ- ence of notches and their avoidance.	Demonstrate theoretical knowledge and practical skills in describing the in- fluence of notches and weld defects and how to improve the fatigue per- formance of weldments under cycle loading.	4	Outline the most common stresses the weld defects and improving the fatigue value of the welded joint. Identify the most common notches and weld defects Interpret the influence of notches and weld defects on the quality and lifetime of welded details.	Point out the characteristics phenomenon of cyclic load of welded structures Carry out the implementation of recommendations for fa- tigue improvement of welded joints	Evaluate with a limited auton- omy a given welded metallic structure fabrication case study, and under supervision, identifying simple recommen- dations to improve the fatigue performance of a weld joint	2

3.8 Design of cyclic loaded welded structures				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	8	4	2	0
Scope:	P3	P3	P3	-
Range of application: bridges, cranes, machines, ships and offshore con- structions, chimneys, towers and masts, vehicles (cars, trucks, railway ve- hicles), etc Acceptance criteria Dimensioning according to different standards and specifications Worked examples Calculation methods.	X X X X X	X X X X X	X X - -	

		3.8 Desig	n of cyc	lic loaded welded structures – LEARNING O	UTCOMES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE	Apply highly specialised understanding of the dif- ferent design methods in the range of applica- tion.	Demonstrate highly spe- cialised knowledge and skills in dimensioning ac- cording different stand- ards and specifications and calculation methods	7	Detail the influence of notch effects on the classification of welded joints Interpret appropriate standards Compare details in different standards and classify them	Interpret and apply the princi- ples of design Design welded joints in ac- cordance with given details	Appraise, with full autonomy, a certain case study of welded metallic structure fabrication, analysing it and designing weld joints, justifying the out- put against the minimum de- sign criteria	16
IWT	Apply advanced under- standing	Demonstrate advanced knowledge and skills in	6	Define the influence of notch effects on the classification of welded joints	Select and apply the principles of design	Appraise, autonomously, a given case study of welded metallic structure fabrication,	8

International Welding Engineers, Technologists, Specialists and Practitioners © Copyright EWF - Approved: January 2019

	of the different design methods in the range of application	selecting the principles in design		Compare details in different standards and classify them	Design welded joints in ac- cordance with given details	analysing it and designing weld joints, comparing the out- put with the minimum design criteria					
IWS	Apply specialised un- derstanding of the re- quirements and gain specialised knowledge of the different design methods in the range of application	Demonstrate specialised knowledge and skills in knowing the typical range of application	5	Describe the design of welded joints in accord- ance with given details Recognise the influence of notch effects	Apply the principles of design	Evaluate, under limited guid- ance, a given welded metallic structure fabrication case study, identifying the influence of notch effects on the classifi- cation of welded joints.	3				
IWP		NOT APPLICABLE									

3.9 Design of welded pressure equipment				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	6	4	2	1
Scope:	P3	P3	P3	P3
Construction of boilers, pressure vessels, pipelines, etc	Х	Х	Х	Х
Calculation (formulae) of the welds	Х	Х	-	-
High and low temperatures applications	Х	Х	Х	Х
Details of design (flanges, nozzles, shells, compensating plates etc.)	Х	Х	Х	Х
Use of laws and design rules, standards and specifications	Х	Х	Х	-
Worked examples of construction and design	Х	Х	Х	-
Standards (ISO, CEN and National)	Х	Х	-	-

	3.9 Design of welded pressure equipment – LEARNING OUTCOMES											
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL					
IWE	Apply highly specialised understanding of the special requirements of design and construction of structural elements in this field of application with regards to the welds	Demonstrate highly spe- cialised knowledge and skills in calculating cir- cumferential and longitu- dinal welds, using laws, design rules and specifi- cations for pressure ves- sels	7	Derive a detailed analysis of a given weld for a particular struc- tural application Interpret appropriate pressure equipment design standards Detail the advantages of differ- ent structural details	Calculate and design from a known level of stress the most appropriate circumferential and longitudinal joint size, and advise on any positional or geometrical modifications	Appraise, with full autonomy, a certain pressure vessel fab- rication case study, analysing it and designing weld joints, justifying the output against the minimum design criteria	12					

IWT	Apply advanced under- standing of the special require- ments of design and construction of struc- tural elements in this field of application with regard to the welds.	Demonstrate advanced knowledge and skills in calculating circumferential and longitudinal welds, using laws, design rules and specifications for pressure vessels	6	Define the advantages of differ- ent structural details	Select appropriate standards Calculate from a known level of stress the most appropriate circumferential and longi- tudinal joint size, and advise on any posi- tional or geometrical modifications	Appraise, autonomously, a certain pressure vessel fabri- cation case study and design- ing weld joints, comparing the output with the minimum de- sign criteria	8
IWS	Apply specialised un- derstanding of the re- quirements and gain specialised knowledge of the special require- ments of design and construction of struc- tural elements in this field of application with regards to the welds.	Demonstrate specialised knowledge and skills in describing the design of given structural weld de- tails for pressure vessels	5	Outline the advantages of differ- ent weld details List the most import precautions when welding a pressure vessel	Describe the design of given structural weld details.	Evaluate, under limited guid- ance, a certain pressure ves- sel fabrication case study, identifying the type of weld joints that should be applied and also the specific precau- tions to avoid problems	3
IWP	Apply basic knowledge of the special require- ments of design and construction of struc- tural elements in this field of application with regard to the welds.	Demonstrate fundamental knowledge and skills in design and construction of welded pressure equip- ment.	4	List all kinds of pressure equip- ment's and pipelines under le- gal regulations and standards which could be operated on high and low temperatures	Make use of welding process according to the drawing of welding pressure equipment. Make use of pipelines according to base material and temperature. Compare the advantages and disad- vantages of different weld details at the area /manufacturing/ of pressure equipment Select the legal rules and the welding pro- cess to the welded joints.	Evaluate with a limited auton- omy a certain pressure vessel fabrication case study, and under supervision identifying type of weld joints that should be applied and also the spe- cific precautions	2

Qualification	IWE	IWT	IWS	IWP
Teaching hours	4	2	1	0
Scope:	P3	P3	P3	-
Comparison of design between steel and aluminium structures	Х	Х	Х	-
Lightweight structures	Х	Х	-	-
Standard alloys for practical use and relevant stresses and strains	Х	Х	-	-
Effects of heat affected zone (HAZ) (softening)	Х	Х	Х	-
Special design principles regarding profiles	Х	Х	-	-
Significance of defects	Х	Х	Х	-
Range of application (vehicles, rolling stocks, ships, aircraft, vessels and				
space)	Х	Х	Х	-
Dimensioning according to different standards and specifications	Х	Х	Х	-
Worked examples	Х	Х	-	-

		3.10 Des	sign of a	aluminium alloys structures – LEARNING OU	TCOMES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE	Apply highly specialised understanding of the be- haviour of welded alu- minium structures with respect to strength, stresses and design	Demonstrate highly spe- cialised knowledge and skills in predicting the be- haviour of the heat af- fected zone, selecting the correct alloys for a given application and dimen- sioning according to differ- ent standards and specifi- cations	7	Differentiate between the design requirements for steel and aluminium welded structures Explain in depth the occurrence of softening in the heat affected zone for a given welded alu- minium structure Explain in depth how to solve the most com- mon imperfections associated with aluminium welds Detail the causes and development of stresses and strains in an aluminium weld.	Design of optimum aluminium weld profiles and geometries for optimum performance in given applications Deduce the correct selection of alloys for given applications Predict the strength of differ- ent aluminium alloys	Appraise, with full autonomy, a certain case study of alumin- ium welded fabrication, ana- lysing it and designing weld joints in accordance with given requirements and justifying the selection of weld sizes and geometries	8
IWT	Apply advanced under- standing of the behaviour of welded aluminium struc- tures with respect to strength, stresses and design.	Demonstrate advanced knowledge and skills in comparing common alu- minium welded joints and defining the advantages against steel construc- tions	6	Differentiate between the design requirements for steel and aluminium welded structures Explain how to minimize the softening of the heat affected zone Explain how to solve the most common imper- fections associated with aluminium welds Define the advantages of aluminium weld joints over those of steel joints	Select common aluminium weld joints for typical applica- tions and compare their char- acteristics	Appraise, autonomously, a certain case study of alumin- ium welded fabrication, ana- lysing it and designing weld joints in accordance with given requirements and comparing the selection of weld sizes and geometries	4

IWS	Apply specialised un- derstanding of the re- quirements and gain basic about the behav- iour of welded alumin- ium structures with re- spect to strength, stresses and design.	Demonstrate specialised knowledge and skills in recognising the common aluminium imperfections and solutions to avoid them	5	Identify some typical applications of alumin- ium joints and describe the advantages against steel construction. Identify typical aluminium joints and joint prep- arations	Recognise the common alu- minium imperfections and pro- pose solutions to avoid them.	Evaluate, with reduced direc- tion, a certain case study of al- uminium welded fabrication, identifying the type of welded joints that should be applied and also the specific precau- tions to avoid problems.	1,5				
IWP		NOT APPLICABLE									

3.11 Introduction to fracture mechanics					
Qualif	ication	IWE	IWT	IWS	IWP
Teaching	hours	4	2	0	0
Scope:		P3	P3	-	-
Viewpoint of fracture mechanics		Х	Х	-	-
Application of fracture mechanics		Х	Х	-	-
Linear elastic fracture mechanics		Х	Х	-	-
Fundamentals of elastic-plastic fracture mechanics		Х	Х	-	-
Critical flaw size, K _{lc} -value		Х	Х	-	-
Fracture mechanics testing (CTOD, etc.)		Х	-	-	-
Different assessment method		Х	-	-	-
Sub-critical crack growth		Х	Х	-	-
Fatigue testing		Х	Х	-	-
Standards global (ISO), regional (CEN) and National		Х	-	-	-

	3.11 Introduction to fracture mechanics – LEARNING OUTCOMES										
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL				
IWE	Apply highly specialised understanding in detail the use of fracture me- chanics for welded structures.	Demonstrate highly spe- cialised knowledge and skills in detailing the influ- ence factors for linear- elastic and elastic-plastic fracture mechanics	7	Explain in depth the principles of linear-elastic and elastic-plastic fracture mechanics Detail the influence factors for linear-elastic and elastic-plastic fracture mechanics. Explain in depth the use of fracture mechanics for dynamically loaded structures	Determine the fracture me- chanics testing and assess- ment methods for a certain ap- plication.	Appraise, with full autonomy, a certain welded fabrication case study, using the fracture mechanics principles to evalu- ate the weld joints perfor- mance and to determine the tests that are needed for eval- uation	8				

IAB-252r5-19

IWT	Apply advanced under- standing of the use of fracture mechanics for welded structures	Demonstrate advanced knowledge and skills in defining the influence fac- tors for linear-elastic and elastic-plastic fracture me- chanics	6	Explain the principles of linear-elastic and elastic-plastic fracture mechanics Define the influence factors for linear-elastic and elastic-plastic fracture mechanics. Explain the use of fracture mechanics for dy- namically loaded structures	Select the fracture mechanics testing and assessment methods for a certain application.	Appraise, autonomously, a certain welded fabrication case study, using the fracture mechanics principles to evaluate the weld joints performance.	4	
IWS & IWP	NOT APPLICABLE							

Module 3 – Construction and Design

Madula 2	IN	VE	IV	VT	IV	/S	IWP	
Module 5	MT	P1 *	MT	P1 *	MT	P1 *	MT	P1 *
Teaching Hours	62	14	44	14	24	4	6	0

* P1 = Part 1, Figures under P1 are given for the Standard Route (see 4.1)

Module 4: Fabrication, applications engineering

Characterization of the general description of Module 4 – Fabrication, applications engineering, describing the Qualification descriptors in terms of Knowledge – K, Skills – S, Competences - C for each IIW welding coordination qualification

COMPETENCE UNIT 4: FABRICATION, APPLICATIONS ENGINEERING											
QUALIFICATION	KNOWLEDGE	SKILLS	COMPETENCES	EQF LEVEL	TEACH- ING HOURS	WORK- LOAD (Hours)	ECVET POINTS				
INTERNATIONAL WELDING ENGINEER	Highly specialised knowledge, original thinking, research and critical assessment of the princi- ples and applicability concerning the quality assurance and quality control applied to welding and re- lated technologies.	Highly specialised problem-solving skills, including critical evaluation, al- lowing to define or develop the best technical and economical solutions for quality assurance and quality control of welded products in complex and unpredictable conditions.	Manage and transform the welding applications concerning the quality assurance and quality control of welded products in a highly complex context. Act as the full responsible person for the defini- tion of the welding and related personnel's tasks.	7	116	232	20				
INTERNATIONA WELDING TECHNOLOGIST	Advanced knowledge and critical understanding of the principles and applicability concerning the quality assurance and quality control applied to welding and re- lated technologies.	Advanced problem-solving skills in- cluding critical evaluation, allowing to choose the proper technical and eco- nomical solutions for quality assur- ance and quality control of welded products in complex and unpredicta- ble conditions.	Manage the applications concerning the quality assurance and quality control of welded prod- ucts in a highly complex context. Act autonomously as the responsible person for decision making and the definition of the welding and related personnel's tasks.	6	83	125	10				
INTERNATIONA WELDING SPECIALIST	Specialised, factual and theoreti- cal knowledge of the theory, prin- ciples and applicability concern- ing the quality assurance and quality control applied to welding and related technologies.	Specialised range of cognitive and practical skills, allowing to develop so- lutions or choose the appropriate methods for quality assurance and quality control of welded products on common/regular problems.	Manage and supervise common or standard ap- plications concerning the quality assurance and quality control of welded products in an unpre- dictable context. Take responsibility with limited autonomy for de- cision making in common or standard work and supervise the welding and related personnel's tasks.	4	56	84	10				
INTERNATIONA WELDING PRACTITIONER	Fundamental factual and theoreti- cal knowledge concerning the quality assurance and quality control applied to welding and re- lated technologies.	Fundamental range of cognitive and practical skills required to iden- tify/choose the proper solutions for quality assurance and quality control of welded products on basic and specific problems.	Self-manage within the guidelines of work, the applications concerning quality assurance and quality control of welded products usually pre- dictable but subject to change. Take responsibility without autonomy for deci- sion-making in basic work and supervise basic tasks of welding and related personnel.	4	29	49	1,6				

4.1 Introduction to quality assurance in welded fabrication								
Qualification	IWE	IWT	IWS	IWP				
Teaching hours	8	8	4	2				
Scope:	P3	P3	P3	P3				
Concept of quality assurance and quality control (including analysis, con-								
tinuous improvement)	Х	Х	Х	Х				
Weldability ISO/TR 581	Х	Х	-	-				
Testing and Inspection Plan (the goal, content and sources to develop it)	Х	Х	Х	Х				
Audit of plant	Х	Х	Х					
Personnel and Equipment	Х	Х	Х	Х				
Maintenance	Х	Х	Х	Х				
Inspection	Х	Х	Х	Х				
Activities of the welding engineer/technologist/specialist/practitioner in the								
different functions in industry (ISO 14731) e.g. RWC	Х	Х	Х	Х				
Standards (ISO 9000, ISO 3834, national and international standards). De-								
velopment of quality plans - ISO 10005)	Х	Х	Х	-				
Software (overview, availability, demonstration, use)	Х	Х	Х	-				

	4.1 Introduction to quality assurance in welded fabrication – LEARNING OUTCOMES											
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL					
IWE & IWT	Apply advanced under- standing of the princi- ples of quality assur- ance and quality control, the related standards and their application to welded fabrication as a special process.	Demonstrate advanced knowledge and skills in quality assurance and quality control and apply them to management of complex challenges in welded fabrication.	6	Analyse the principles of quality assur- ance, quality control and inspection sys- tems in relation to welded fabrication to re- alise its specific quality requirements Define the essential elements of quality control procedures and quality plans in re- lation to welded fabrication quality require- ments. Define the purpose of an audit plan and considering its influence in welded fabri- cation quality requirements. Define audit principles, illustrate how each can affect the reliability of results, and compare their impacts on welded fabrica- tion quality requirements.	Choose quality assurance, quality control and inspections systems to determine particular quality out- comes in welded fabrication. Design and construct elements of quality control procedures and quality plans to determine given welded fabrication quality require- ments. Interpret relevant standards (e.g. ISO 9000, and ISO 3834).	Appraise a given welded fabri- cation case study, analyse its specific quality requirements. Formulate a quality assurance solution, identifying alterna- tives where appropriate. Create a quality audit plan and undertake a case study audit of a pre-defined welding fabri- cation identifying shortfalls and non-conformities	16					

				Compare the personnel and equipment factors that have a major effect on welded fabrication quality Define the quality assurance tasks of the welding coordinator responsible for welded fabrication/ manufacture in rela- tion with the impact of the specific tasks on weld quality			
IWS	Apply understanding of the principles of quality assurance and quality control in the scope of the related standards and their application to welded fabrication as a special process.	Demonstrate specialised knowledge and skills in quality assurance and quality control and apply them to management of complex challenges in welded fabrication.	5	List the main differences between quality assurance, quality control and inspection systems by describing their usage for welded fabrication. List the basic factors related to personnel and equipment, by describing their influ- ence on the quality of welded fabrication. Outline the role of the Welding Specialist in the fabrication industry.	Demonstrate effective writing of quality control procedures. Demonstrate correct use of stand- ards (e.g. ISO 9000, and ISO 3834).	Appraise a given welded fabri- cation case study, interpret the specific quality require- ments, and compile a quality control procedure. Appraise an audit report and provide appropriate corrective and preventive actions for non-conformities	6
IWP	Apply basic knowledge of principles of quality assurance and quality Control, and recognise the related standards and their application to welded fabrication as a special process.	Demonstrate fundamental knowledge and skills in quality assurance and quality control, applying them to the management of simple welded fabrica- tion.	4	Identify the goals and the differences of quality assurance and quality control quality to the own practice and work. Outline the most common factors related to personnel and equipment, which influ- ence the quality of a welded construction. Identify the role of the Welding Practi- tioner in the fabrication industry	Use quality control procedures, and instructions in welding fabri- cation. Make use of standards (e.g. ISO 9000, and ISO 3834) in order to guarantee the quality of the welded fabrication.	Appraise with limited auton- omy a given welded fabrica- tion case study, identifying some specific/basic quality requirements.	3

Qualification	IWE	IWT	IWS	IWP
Teaching hours	16	12	10	6
Scope:	P3	P3	P3	P3
Advantages to the quality of brazed and welded constructions	Х	Х	Х	Х
Brazing and Welding sequence	Х	Х	Х	-
Welding coordination and inspection personnel; qualification tasks and re-				
sponsibilities (ISO 14731, ISO 9712, CEN and National standards)	Х	Х	Х	Х
Brazer and Welder Approval /Qualification and Brazing and Welding Pro-				
edure Qualification - Introduction/Overview	Х	Х	Х	Х
Brazer and Welder Approval/Qualification (ISO 9606, CEN and National				
Standards)	Х	Х	Х	X
Brazing and Welding Procedure Specification – The goal, how to create				
and develop (ISO 15607 and 15609, CEN and National Standards)	Х	Х	Х	Х
Brazing and Welding Procedure Qualification (ISO 15610, 156111, 15612,				
15613 and 15614) , CEN and National standards)	Х	Х	Х	X
Brazing and Welding Operator Qualification (ISO 14732, CEN and National				
Standards)	Х	Х	Х	X
raceability (materials identification, welder/operator, procedures, certifi-				
cates)	Х	Х	Х	-
Practical exercises:				
WE - Weiding procedure qualification 4 hours from 16				
WE - Welder and welder operator qualification 4 hours from 16				
WI - Welding procedure qualification 2 hours from 12				
WI - Welder and welder operator qualification 2 hours from 12				
WS - Welding procedure qualification 2 hours from 10				
WS - Welder and welder operator qualification 2 hours from 10				
IWP - Welding procedure qualification 1 hours from 6				
WP - Welder and welder operator qualification 1 hours from 6				

4.2 Quality control during manufacture – LEARNING OUTCOMES								
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL	
IWE	Apply highly specialised understanding of the re- quirements and function of Quality Control during manufacture,	Demonstrate highly spe- cialised knowledge and skills in quality control and apply them to solving quality problems applied	7	Explain in detail the essential ele- ments of WPS/WPQR/pWPS BPS/pBPS/BPQR and the main ad- vantages to the quality of welded fab- rication requirements.	Compile WPSs for welded compo- nents.	Appraise a given welded fab- rication case study, define its specific requirements, and create a WPS, identifying al- ternatives where appropriate.	32	

IAB-252r5-19

	the standards related to	manufacture of products	of welded		Explain the purpose of a welder qual-	Discuss WPSs compliance with the requirements of relevant national and	Appraise a given welded fab-	
	erators and brazing and	producto.			ification and the main advantages to	international standards.	rication case study, evaluate	
	welding procedure qual-				the quality of welded fabrication	Discuss the requirements of relevant	the WPS and welder/welding	
	traceability methods,				Clarify the purpose of a welding oper-	standards for the gualification of a	relevant standards, and mod-	
	the need for calibration,				ator qualification and its outcomes	WPS.	ify to demonstrate full compli-	
	and monitoring of pro-				with the welded fabrication quality re-	Determine the main variables for a	ance with requirements.	
	cess parameters.				quirements.	range of qualification.		
					Clarify the welding control tasks of			
					the welding coordinator responsible for welded fabrication/ manufacture	Discuss the requirements of relevant standards for welder qualification		
						Determine the main variables for a		
					Explain the impact of the specific	particular welder qualification and its		
					tasks on weld quality.	range of qualification.		
					Classify the welding control tasks of	Discuss the requirements of relevant		
					welding inspectors.	standards for welder qualification.		
					Explain the impact of the specific	Determine the main variables for a		
					tasks on weld quality.	particular welder qualification and its		
						Discuss the requirements of relevant		
						standards for material traceability.		
						Elaborate the essential content of		
					Eveloin the ecceptical elements of	materials procedures and certificates.		
					WPS/WPQR/pWPS	nents.		
					BPS/pBPS/BPQR and their rela-			
					tionships with welded fabrication	Evaluate their compliance with the re-		
	standing of the require-				quality requirements.	international standards.	Appraise a given welded fab-	
	ments and function of				Interpret the requirements of relevant		its specific requirements, and	
	Quality Control during	Demonstrate a	dvanced		standards for the qualification of a	Determine the main variables for a particular WPS qualification and its	compile a WPS, identifying al-	
	standards related to	knowledge and	skills in		WI 3.	range of qualification.	ternatives where appropriate.	
IWT	brazing and welding op-	them to solving	quality	6	Explain the purpose of a welder qual-	Determine the main veriables for a	Appraise a given welded fab-	18
	welding procedure qual-	problems applie	ed manu-		to welded fabrication quality require-	particular welder gualification and its	rication case study, evaluate	
	ification including	facture of welde	ed prod-		ments.	range of qualification.	the WPS and welder/welding	
	joint traceability meth-	4010.			Interpret the requirements of relevant	Determine the main variables for a	relevant standards, and mod-	
	bration, and monitoring					range of qualification.	ify to demonstrate full compli-	
	of process parameters.				Explain the purpose of a welding op-		ance with requirements.	
					erator qualification and how its out-	standards for material traceability de-		
					quality requirements.	fining the essential content of materi-		
						als procedures and certificates.		

International Welding Engineers, Technologists, Specialists and Practitioners © Copyright EWF - Approved: January 2019

				Interpret the requirements of relevant standards for welder qualification. Interpret the requirements of relevant standards for material traceability. Explain the welding control tasks of the welding coordinator responsible for welded fabrication/ manufacture Define the welding control tasks of			
IWS	Apply understanding of the requirements and function of Quality Con- trol during manufacture, the stand- ards related to brazing and welding operators and brazing and welding procedure qualification including joint traceability meth- ods, the need for cali- bration, and monitoring of process parameters.	Demonstrate specialised knowledge and skills in quality control and apply them to solving quality problems applied manu- facture of welded prod- ucts.	4	weiging inspectors. Recognise the main purpose of a WPS/WPQR/pWPS BPS/pBPS/BPQR and the advantages to the quality of welded fabrication. Recognise the main variables for a particular WPS qualification and its range of qualification in accordance with National and/or International standards. List the main purposes of welder qualification and relate them to the main advantages to the quality of welded fabrication. Recognise the main variables for a particular welder qualification and relate them to the main advantages to the quality of welded fabrication. List the main purpose of a welding operator qualification and relate them to the main advantages to the quality of welded fabrication. List the main purpose of a welding operator qualification and relate them to the main advantages to the quality of welded fabrication. List the main purpose of a welding operator qualification and relate them to the main advantages to the quality of welded fabrication. List the main purpose of a welding operator qualification and relate them to the main advantages to the quality of welded fabrication. IIST the traceability requirements for materials procedures and certificates and give examples	Organise WPSs for welded compo- nents in accordance with national and international standards. Use correctly the standards for the qualification of a WPS, Use correctly the standards for welder qualification Use correctly the standards for weld- ing operator qualification. Determine the main variables for a particular welding operator qualifica- tion and its range of qualification.	Appraise a given welded fabri- cation case study, and com- pile a WPS in accordance with a relevant standard. Appraise a given welded fabri- cation case study, evaluate the WPS and welder/welding operator documents against relevant standards, and iden- tify any compliance issues.	15
IWP	Apply basic knowledge of the requirements and function of Quality Con- trol during manufacture, the stand- ards related to brazing and welding operators and brazing and weld- ing procedure	Demonstrate fundamental knowledge and skills in quality control and apply them to solving quality simple problems in manu- facture of welded prod- ucts.	4	Outline the purpose of WPS and of welder qualification, and point out the most common advantages to the quality of the welded construction. List the main purpose of WPS/WPQR/pWS, and related them to their advantages to the quality of welded fabrication.	Check the main variables for a certain WPS qualification and its range of ap- proval Check the main variables for a certain welder, welding operator qualification and its range of approval	Appraise with limited auton- omy a given welded fabrica- tion case study, checking the WPS and welder/welding op- erator documents against rel- evant standards and specifications.	9

qualification including joint traceability meth- ods, the need for cali- bration, and monitoring of process parameters.	List the main purposes of welder, brazer and welding operator qualifi- cation and relate them to the main advantages to the quality of welded fabrication.		
	Outline the most common ISO stand- ards used for welder, brazer, welding operators qualification, and approval of welding procedures and develop- ing of welding procedures specifica- tions and the main features for each propose		

Qualification	IWE	IWT	IWS	IWP
Teaching hours	6	4	2	2
Scope:	P3	P3	P3	P3
Influencing factors	Х	Х	Х	Х
Thermal data of the materials	Х	Х	-	-
Origin of the residual stresses and deformation Relationship between the material at a certain temperature and its mechan-	Х	Х	Х	Х
ical characteristics	Х	Х	Х	Х
Magnitude of longitudinal and transverse shrinkage stresses Distribution of the residual stresses at weld (parallel to the weld axis, per-	Х	Х	Х	Х
pendicular, and through thickness, influence of the material thickness)	Х	Х	Х	Х
Relationship between heat input, shrinkage stresses and distortion	Х	Х	Х	Х
Methods of residual stress measurement	Х	Х	-	-
Welding sequence techniques	Х	Х	Х	Х
Effects of residual stresses on the behaviour of the structure in service	Х	Х	Х	Х
Methods of reducing residual stresses or distortion	Х	Х	Х	Х
Examples to prevent and control of distortion	Х	Х	Х	Х
ing, rolling, local heating, etc.)	Х	Х	Х	Х

4.3 Residual Stresses and Distortion – LEARNING OUTCOMES								
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL	

IWE	Apply specialised un- derstanding of the main factors affecting welding stress and distortion in welded fabrications and how these effects can be measured and mini- mised.	Demonstrate highly spe- cialised knowledge and skills in solving residual stress and distortion prob- lems in welded fabrica- tions.	7	Explain fully the origin, influencing fac- tors and magnitude of residual stress and distortion in welded fabrications. Define in detail the relationship between the material at a certain temperature and its mechanical characteristics. Define in detail procedures to minimise distortion and stress.	Determine the magnitude of residual stress and distortion in welded fabri- cations. Predict critically the distribution of residual stresses in a weld (parallel to the weld axis, perpendicular, and through thickness, influence of the material thickness) Predict, quantitatively, the contrac- tion and distortion in joints and struc- tures. Predict critically how residual stresses may affect the behaviour of a structure in service.	Appraise autonomously a given welded fabrication case study, by determining the magnitude of residual stress and distortion, and propose solutions to achieve the required level of weld quality and geometrical tolerances.	12	
IWT	Apply understanding of the main factors affect- ing welding stress and distortion in welded fab- rications and how these effects can be measured and minimised.	Demonstrate advanced knowledge and skills in solving residual stress and distortion problems in welded fabrications.	6	Explain the origin and influencing fac- tors of residual stress Relate with distor- tion and geometrical requirements of welded fabrication. Explain the relationship between the material at a certain temperature and its mechanical characteristics. Define procedures to minimise distor- tion and stress	Calculate and relate this to distortion and geometrical stability of a welded fabrication Predict the distribution of residual stresses in a weld (parallel to the weld axis, perpendicular, and through thickness, influence of the material thickness) Predict, quantitatively, the contrac- tion and distortion in joints and struc- tures. Predict how residual stresses may affect the behaviour of a structure in service.	Appraise a given welded fabri- cation case study, calculate the residual stress and distor- tion, and select solutions to achieve the required level of weld quality and geometrical tolerances.	6	
IWS & IWP	Apply basic knowledge of the main factors af- fecting welding stress and distortion in welded fabrications and how these effects can be measured and minimised.	Demonstrate basic theo- retical knowledge and practical skills in solving residual stress and distor- tion problems in simple welded fabrications.	4	Outline the origin and influencing factors of residual stress and distortion in welded fabrications. Identify the relationship between the material at a certain temperature and its most relevant mechanical characteris- tics.	Make a use of procedures to mini- mise distortion and stress. Determine how residual stresses may affect the behaviour of a struc- ture in service.	Appraise with limited auton- omy a given welded fabrica- tion case study, by determin- ing the likelihood of residual stress and distortion. Use under direction the proce- dures to achieve the required	З	

IAB-252r5-19

		Outline the distribution of residual	level of weld quality and geo-	
		stresses in a weld (parallel to the weld	metrical tolerances.	
		axis, perpendicular, and through thick-		
		ness,		
		influence of the material thickness)		
		Identify the most common contraction and distortion in joints and structures.		4
		Outline how residual stresses may af- fect the behaviour of a structure in ser-		
		vice.		

4.4 Plant facilities, welding jigs and fixtures				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	4	4	4	2
Scope:	P3	P3	P3	P3
Layout of production line Jigs, fixtures and positioners (types, applications, advantages, special pre-	Х	Х	Х	Х
cautions)	Х	Х	Х	Х
Roller beads, manipulators	Х	Х	Х	Х
Cables, electrical connections, and special precaution	Х	Х	Х	Х
Operational environment Auxiliary equipment (for fit up, movement, backing gas devices, flow me-	Х	Х	Х	Х
ters, etc)	Х	Х	Х	Х
Joint fit up	Х	Х	Х	Х
Tack welding (specific cares, distribution, length and their removal) Equipment for preheat, postheat, and other heat treatments, also temper-	Х	Х	Х	Х
ature control including furnace and local heat treatment	Х	Х	Х	Х

			4.4 Plan	t facilitie	es, welding jigs and fixtures – LEARNIN	IG OUTCOMES		
		ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE	E & IWT	Apply advanced under- standing of the need for, and function of, auxiliary equipment, jigs and fix- tures from the viewpoint of quality, economics and the environment.	Demonstrate advanced knowledge and skills in the application of auxiliary equipment, jigs and fix- tures in the control of	6	Explain in detail the workshop layout principles for improved productivity, safety and comfort. Explain fully the advantages of using fix- tures, jigs and positioners	Determine the appropriate cables, heat treatment and temperature control equipment to use the appro- priate type of fixture, jig or positioner to achieve the required quality level.	Appraise a given welded fabri- cation case study, define the plant facilities and design the layout to maximise productiv- ity, safety and ergonomic ben- efits.	8

International Welding Engineers, Technologists, Specialists and Practitioners © Copyright EWF - Approved: January 2019

								_
		welding quality, econom- ics and environmental re- quirements.		Explain in detail the requirements re- lated to joint fit up and tack welding.	Decide about the appropriate ca- bles, heat treatment and tempera- ture control equipment.	Manage alternative options, where appropriate.		
IWS	Apply understanding of the need for, and func- tion of, auxiliary equip- ment, jigs and fixtures from the viewpoint of quality, economics and the environment.	Demonstrate specialised knowledge and skills in the application of auxiliary equipment, jigs and fix- tures in the control of welding quality, econom- ics and environmental re- quirements	5	Recognise the principles for improved productivity, safety and comfort. Identify the advantages of using fix- tures, jigs and positioners. Identify the special requirements for joint fit up and tack welding.	Check if the type of fixture, jig or positioner is suitable for a particular welded fabrication. Select the type of auxiliary equip- ment and cables, heat treatment and temperature control equipment to be used in a particular welded fabrication.	Appraise a given welded fab- rication case study, select the fixtures, jig or positioner, and auxiliary equipment and ca- bles, heat treatment and tem- perature control that will im- prove productivity, safety and comfort.	6	
IWP	Apply basic knowledge of the need for, and function of, auxiliary equipment, jigs and fixtures from the view- point of quality, eco- nomics and the environ- ment.	Demonstrate fundamental knowledge and skills in the application of auxiliary equipment, jigs and fix- tures in the control of welding quality, econom- ics and environmental re- quirements	4	Outline the importance of workshop layout to achieve a higher and easier production. Identify the most common advantages of using fixtures, jigs and positioners. List the most common type of fixture, jig and positioner to be used in a cer- tain welded construction. Identify the type of auxiliary equipment and cables, heat treatment and temper- ature control equipment to be used in a welded fabrication. List the necessary characteristics for the auxiliary equipment to be used in a certain welded construction, cables, heat treatment equipment and temper- ature control. Outline the general precautions related with joint fit up and tack welding.	Choose the proper type of fixture, jig or positioner to be used for a particular welded fabrication.	Appraise with limited auton- omy a given welded fabrica- tion case study, by selecting the fixtures, jig or positioner, and auxiliary equipment and cables, heat treatment and temperature control according to productivity, safety and comfort.	4	

Qualification	IWE	IWT	IWS	IWP
Teaching hours	4	4	4	4
Scope:	P3	P3	P3	P3
Introduction to health and safety requirements	Х	Х	Х	Х
Survey of safety and environmental aspects, risk assessment	Х	Х	Х	Х
Hazards of electric power	Х	Х	Х	Х
Electro-magnetic fields	Х	Х	Х	Х
Connecting of equipment	Х	Х	Х	Х
Problems with shielding gases	Х	Х	Х	Х
Radiation and eye protection	Х	Х	Х	Х
Welding fume emission	Х	Х	Х	Х
Exposure limits (Maximum Allowable Concentration) MAC and UEL (Upper				
Exposure Limit) values	Х	Х	-	-
Ventilation filters (ISO 15012) and fume extraction (type of equipment and				
airflow)	Х	Х	Х	Х
Ergonomics	Х	Х	Х	Х
Determination of acceptable emissions	Х	Х	_	-
Tests for measuring emissions	Х	Х	-	-
Noise levels and ear protection	Х	Х	Х	Х
Special risks for automated processes	Х	Х	Х	Х
Standards and National regulations	Х	Х	Х	Х
Protective clothing	Х	Х	Х	Х
Health effects of grinding (vibration and dust)	X	X	X	X
Hazards regarding the heat (spatter, flame, combustion, fire)	X	X	X	Х
Oxvaen environment enrichment.	X	X	X	X

	4.5 Health and Safety – LEARNING OUTCOMES										
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL				
IWE & IWT	Apply understanding of the health and safety hazards associated with welding and fabrication processes, including techniques to minimise them.	Demonstrate highly spe- cialised knowledge and skills in controlling the health and safety hazards associated with welding and fabrication processes	6	Interpret fully the health and safety hazards associated with electricity, gases, fumes, fire, radiation and noise Classify the health hazards associ- ated with the heat used in metal pro- cessing (grinding, welding spatter, flame, fire, combustion).	Discuss Health and Safety regula- tions, apply them to welding hazards. Assess the risk associated with weld- ing operations. Check the welding hazards risks. Using the latest HSE COSHH de- scriptors identify those consumables	Appraise a given welded fabri- cation case study, predict the hazards, define the health and safety requirements, under- take a risk assessment and formulate the management actions to mitigate the risks.	8				

				Classify safe working procedures to ensure that regulatory requirements are met. Explain the correct PPE for each haz- ard. Explain oxygen environment enrich- ment and the hazards created by it.	and substances associated with weld- ing a fabrication		
IWS & IWP	Apply basic knowledge of the health and safety hazards associated with welding and fabrication processes, including techniques to minimise them.	Demonstrate theoretical knowledge and practical skills in controlling the health and safety hazards associated with welding and fabrication processes	4	List the health and safety hazards as- sociated with electricity, gases, fumes, fire, radiation and noise. Interpret simple the health hazards associated with the heat used in metal processing (grinding, welding spatter, flame, fire, combustion). List the health hazards associated with the heat used in metal processing (grinding, welding spatter, flame, fire, combustion). Outline oxygen environment enrich- ment as a welding hazard.	Analyse how each is created and choose the actions that can mitigated in a welded fabrication environment. Apply Health and Safety regulations with respect of welding hazards. Select controls to mitigate the risks presented by welding hazards. Use safe working procedures by ap- plying the Health and Safety regulation requirements. Use the adequate protective clothing as measure to minimise potential health and safety problems.	Appraise with limited auton- omy a given welded fabrica- tion case study, by identifying the health and safety require- ments, hazards and actions to mitigate the risks.	6

Qualification	IWE	IWT	IWS	IWP
Teaching hours	4	4	4	2
Scope:	P3	P3	P3	P3
Methods of measurement (electrical parameters, gas flow rate, tempera-				
ture, velocity)	Х	Х	Х	Х
Instruments (types, measuring applications)	Х	Х	Х	Х
Temperatures (ISO 13916), humidity, wind	Х	Х	Х	Х
Cooling time e.g. $\Delta t_{8/5}$	Х	Х	Х	Х
Welding parameters (voltage, current, speed, gas flow rate, etc.)	Х	Х	Х	Х
Control in heat treatment (heating and cooling rate, ISO/TR 17663)	Х	Х	Х	Х
Calibration and validation of equipment (ISO 17662)	Х	Х	-	-
Laboratory exercises: - IWE, IWT and IWS: 1 hour from 4 - IWP: 1 hour from 2				

		4.6 Measurer	nent, Co	ontrol and Recording in Welding – LEA	RNING OUTCOMES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE & IWT	Apply understanding of the requirements for measurement, control and recording during welding and al- lied operations.	Demonstrate advanced knowledge and skills in measurement, control and recording of essential var- iables in welding	6	Explain in detail the methods of meas- urement used in the control of welding. Interpret the procedures for the calibra- tion, validation and monitoring of weld- ing operations	Apply working procedures for the correct measurement and control of welding parameters and heat treatments operations.	Appraise a given welded fabrica- tion case study, define the require- ments for calibration, validation and monitoring of welding opera- tions, manage appropriate meth- ods of measurement, to be applied to achieve the required level of control.	8
IWS	Apply understanding of the requirements for measurement, control and recording during welding and al- lied operations.	Demonstrate specialist knowledge and skills in measurement, control and recording of essential var- iables in welding	5	Describe the methods of measurement used in the control of welding.	Apply requirements for the cali- bration, validation and monitor- ing of welding operations.	Appraise a given welded fabrica- tion case study. Apply the requirements for calibra- tion, validation and monitoring of welding operations given in work- ing procedures.	6
IWP	Apply basic knowledge of the requirements for measurement, control and recording during welding and allied oper- ations.	Demonstrate fundamental knowledge and skills in measurement, control and recording of essential variables in welding	4	Identify the most common methods of measurement used in the control of welding.	Carry out the implementation of the requirements for the calibra- tion, validation and monitoring of welding operations.	Appraise with limited autonomy a given welded fabrication case study, identifying the requirements for calibration, validation and monitoring of welding operations given in working procedures.	4

Qualification	IWE	IWT	IWS	IWP
Teaching hours	4	3	2	1
Scope:	P3	P3	P3	P3
Types of weld imperfections according to ISO 6520 standards Acceptance criteria (e.g. ISO 5817, ISO 10042, ISO 13919, ISO 9013, ISO	Х	Х	Х	Х
17635)	Х	Х	Х	Х
Significance of imperfections	Х	Х	Х	-
Introduction to ISO/TR 15235	Х	Х	-	-
Engineering critical assessment techniques	Х	Х	-	-

		4.7 Imp	erfectio	ns and Acceptance Criteria – LEARNIN	G OUTCOMES		
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL
IWE	Apply understanding of the principles of imper- fections and acceptance criteria and fitness for purpose.	Demonstrate highly spe- cialised knowledge and skills in determining im- perfections and ac- ceptance criteria for welded joints	7	Interpret correctly the types of weld and HAZ imperfections and how acceptance criteria are applied to them. Define if an imperfection is likely to be material related or induced during man- ufacturing.	Discuss the significance of im- perfection size, morphology and position relative to the effect of the imperfection on structural in- tegrity. Produce Engineering Critical Assessment.	Appraise a given welded fabrica- tion case study, define appropri- ate acceptance criteria, monitor de results and make the fitness for service decision	8
IWT	Apply understanding of the principles of imper- fections and acceptance criteria and fitness for purpose.	Demonstrate advanced knowledge and skills in determining imperfections and acceptance criteria for welded joints	6	Interpret the types of weld imperfections and how acceptance criteria are applied to them. Discuss the significance of imperfection size, morphology and position relative to the effect of the imperfection on struc- tural integrity. Compare typical methods of Engineer- ing Critical Assessment techniques.	Apply acceptance standards for weld imperfections.	Appraise a given welded fabrica- tion case study, apply appropriate acceptance criteria, and deter- mine the results.	4,5
IWS	Apply basic knowledge of the principles of im- perfections and ac- ceptance criteria.	Demonstrate theoretical knowledge and practical skills in determining im- perfections and ac- ceptance criteria for welded joints	4	Recognise the significance of the most common weld imperfections relative to their size, location and morphology, as given on acceptance standards.		Appraise with limited autonomy a given welded fabrication case study, by interpreting the significance of identified imperfections.	3
IWP	Apply basic knowledge of the principles of im- perfections and ac- ceptance criteria.	Demonstrate theoretical knowledge and practical skills in identifying imper- fections and determining	4	Outline the types of weld imperfections and compare how acceptance criteria are applied to them.		Appraise with limited autonomy a given welded fabrication case study, by applying appropriate acceptance criteria, and determine the results.	3

IAB-252r5-19

the accentance criteria for	Identify the significance of the most		
welded jointe	common wold importactions relative to		
weided joints	common weid imperfections relative to		
	their size, location and morphology, as		
	given on acceptance standards.		

4.8 Non-Destructive Testing					
Qu	alification	IWE	IWT	IWS	IWP
Teach	ing hours	18	8	8	8
Scope:		P3	P3	P3	P3
Fundamentals of NDT methods (visual, dye penetrant, magnet	ic particle,				
eddy current, acoustic emission, radiography, digital RT, ultraso	nic, etc.)	Х	Х	Х	Х
Field of application and limitations		Х	Х	Х	Х
Design in respect of NDT		Х	Х	Х	Х
Calibration		Х	Х	Х	Х
Interpretation (IIW Radiographic reference)		Х	Х	Х	Х
Recording of data		Х	Х	Х	Х
Correct selection of the NDT methods versus application (e.g	g. CEN/TR				
15135)		Х	Х	Х	Х
Qualification and certification of NDT personnel (EN ISO 9712).		Х	Х	Х	Х
NDT procedures		Х	Х	Х	Х
Automation of NDT (computer aided evaluation, etc.)		Х	Х	-	-
Use of standards and specifications		X	X	-	-
Health and safety aspects		Х	Х	Х	Х
Review of documents and protocols from NDT test sites		Х	Х	Х	-
	10				
Laboratory exercises: - IWE: 10 hours f	rom 18				
- IWI: 5 hours	from 8				
- IWS: 5 hours	s from 8				
- IWP: 5 hours	s from 8				

Note: Welding coordination personnel may need qualifications according to ISO 9712. The education in this guideline may be accepted by a certification body against the training requirements of ISO 9712

4.8 Non Destructive Testing – LEARNING OUTCOMES									
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL		

IWE	Apply understanding of the use of Non Destruc- tive Testing as applied to welding fabrications.	Demonstrate advanced knowledge and skill in the application of NDT to welded joints	7	NDT methods comparing their ad- vantages and disadvantages when ap- plied to welded fabrications. Interpret weld imperfections, relating their causes and avoidance. Explain in detail the principles of NDT in- terpretation	NDT methods for the detection of specific imperfection Apply acceptance standards for weld imperfections Apply the requirements for qual- ification of NDT personnel. Undertake laboratory applica- tion of relevant NDT methods to welded joints. Check the features of weld de- sign that may prevent or ad- versely affect application of NDT methods. Produce safety requirements for the main NDT methods.	Appraise a given welded fabrica- tion case study, determine the NDT requirements, define the ap- propriate method(s) and relevant safety requirements. Define weld design and/or fabrica- tion sequencing to support inspec- tion, and monitor the reports	36
IWT	Apply understanding of the use of Non Destruc- tive Testing as applied to welding fabrications.	Demonstrate specialised knowledge and skill in the application of NDT to welded joints	6	 NDT methods relating their advantages and disadvantages when applied to welded fabrications Interpret weld imperfections, their causes, avoidance and methods of detection Explain the principles of NDT interpretation Explain the features of weld design that may prevent or adversely affect application of NDT methods. Explain the safety requirements for the main NDT methods. 	Select acceptance standards for weld imperfections Select the requirements for qualification of NDT personnel. Undertake laboratory applica- tion of relevant NDT methods to welded joints.	Appraise a given welded fabrica- tion case study, identify the NDT requirements, select the appropri- ate method(s) and relevant safety requirements, choose an appro- priate weld design and/or fabrica- tion sequencing to support inspec- tion, and evaluate the reports.	12
IWS & IWP	Apply basic knowledge of the use of Non De- structive Testing as ap- plied to welding fabrica- tions.	Demonstrate theoretical knowledge and practical skills in the application of NDT to welded joints	4	Outline the functionality of the main NDT methods. List the most common advantages and disadvantages of NDT methods when applied to welded fabrications. Identify the most common weld imper- fections, their causes and avoidance and methods of detection	Make use of acceptance stand- ards for weld imperfections. Undertake simple laboratory ap- plication of relevant NDT meth- ods to welded joints.	Appraise with limited autonomy given welded fabrication case study, by identifying the NDT re- quirements, and selecting the ap- propriate method(s) and relevant safety requirements,	12

	Describe the most common principles of NDT interpretation.	
	Recognise the features of weld design that may prevent or adversely affect ap- plication of NDT methods.	
	Recognise the safety requirements for the main NDT methods.	

4.9 Economics and Productivity				
Qualification	IWE	IWT	IWS	IWP
Teaching hours	8	5	2	1
Scope:	P3	P3	P3	P3
Analysis of welding costs	Х	Х	Х	Х
Deposition rate	Х	Х	Х	Х
Costs of labour	Х	Х	Х	-
Costs of welding consumables	Х	Х	Х	-
Costs of equipment	Х	Х	Х	-
Return on investment	Х	Х	-	-
Costs of energy	Х	Х	-	-
Welding processes operation factor	Х	Х	Х	Х
Calculation of welding costs	Х	Х	Х	-
Cost awareness (of labour, consumables, equipment, gases, energy, etc.)	Х	Х	Х	Х
The application of software, calculation programmes	Х	Х	-	-
Measures for decreasing welding costs	Х	Х	Х	Х
Mechanisation	Х	Х	Х	Х
Automation	Х	Х	Х	Х
Robotics	Х	Х	Х	Х

	4.9 Economics and Productivity – LEARNING OUTCOMES								
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL		
IWE	Apply understanding of the economics of weld- ing operations applied to welded fabrications.	Demonstrate highly spe- cialised knowledge and skills in economics and productivity for fabrication and manufacture of welded products.	7	Explain in detail the different elements comprising the cost of welded fabrica- tion and how they are affected by changes in the welding variables.	Assess the cost of welding oper- ations.	Appraise a given welded fabrica- tion case study, determine the welding costs, recommend meth- ods for minimising the cost of welding, and estimating the im- provements.	16		

				Events in a surrouting the standard investor and			
				Explain correctly the techniques and technologies that can be applied to min-			
				imise welded production costs.			
iwt	Apply understanding of the economics of weld- ing operations applied to welded fabrications.	Demonstrate advanced knowledge and skills in economics and productiv- ity for fabrication and manufacture of welded products.	6	Explain the elements comprising the cost of welded fabrication, and how they are affected by changes in the welding variables. Explain the techniques and technologies that can be applied to reduce welded production costs	Assess the cost of welding oper- ations.	Appraise a given welded fabrica- tion case study, identify the factors affecting welding costs, compare options to reduce the cost of weld- ing, and estimate the improve- ments.	7,5
iws	Apply basic knowledge of the economics of welding operations ap- plied to welded fabrica- tions.	Demonstrate theoretical knowledge and practical skills in economics and productivity for fabrication and manufacture of welded	4	Identify the elements comprising the cost of welded fabrication.	Calculate the cost of welding op- erations.	Appraise a given welded fabrica- tion case study, recognise the rel- evant welding and handling proce- dures that would reduce the cost of welding, and estimate the im- provements.	3
IWP	Apply basic knowledge of the economics of welding operations ap- plied to welded fabrica- tions.	Demonstrate theoretical knowledge and practical skills in economics and productivity for fabrication and manufacture of welded joints.	4	Identify the elements comprising the cost of welded fabrication. Associate the welding processes oper- ation factor.	Make use of welding and han- dling most common procedures including mechanisation and automation to minimise produc- tion costs. Carry out a basic calculation of a simple welding operation	Appraise with limited autonomy a given welded fabrication case study, exemplifying welding and handling procedures that would reduce the cost of welding.	2

4.10 Repair Welding					
	Qualification	IWE	IWT	IWS	IWP
	Teaching hours	2	2	1	1
Scope:		P3	P3	P3	P3
Welding repair procedure specification		Х	Х	Х	Х
Welding repair plan		Х	Х	Х	Х
Welding repair procedure qualification		Х	Х	Х	Х
NDT of the weld repair		Х	Х	Х	Х
Special precautions		Х	Х	Х	Х

4.10 Repair Welding – LEARNING OUTCOMES									
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL		

IWE & IWT	Apply understanding of the problems of repair welding both for in-man- ufacture and in-service situations.	Demonstrate advanced knowledge and skills in the application of repair welding.	6	Explain in detail how a repair weld may detrimentally affect the quality or perfor- mance of the product. Interpret the hazards presented by re- pair welding, particularly for in-service repairs. Interpret comprehensive procedures to be applied to weld repairs	Make procedures for welder qualification to be applied to repair welds.	Appraise a given weld repair case study, define the procedure and welder qualification requirements. Monitor the safety requirements applications, and predict any im- pact on weld quality.	4
IWS & IWP	Apply basic knowledge of the problems of repair welding both for in man- ufacture and in-service situations.	Demonstrate basic theo- retical knowledge and practical skills in the appli- cation of repair welding.	4	Outline the most common problems of making repair welds. Describe the hazards likely to occur in making repair welds particularly for in- service repairs.	Apply the most common require- ments of comprehensive proce- dures to weld repair. Review procedural and operator qualifications to be applied to re- pair welds.	Appraise with limited autonomy a given weld repair case study, iden- tifying the correct procedure and welder qualification requirements. Appraise with limited autonomy a given weld repair case study, ex- plaining the relevant safety re- quirements and likely impacts on weld quality.	2

4.11 Reinforcing-steel welded joints				
Qualificatio	n IWE	IWT	IWS	IWP
Teaching hour	s 2	1	1	0
Scope:	P3	P3	P3	-
Reinforcing-steel types, properties	. X	Х	Х	-
Direct and indirect loading	. X	Х	Х	-
Types of joints used (lap, cruciform)	. X	Х	Х	-
Calculation	X	Х	Х	-
Weldability with respect to weld joint strength	X	Х	Х	-
Preheating in respect to bar diameter	. X	Х	Х	-
Application of welding processes	. X	Х	Х	-
Standards and specifications (ISO 17660 series and National Standards)	X	X	Х	-

	4.11 - Reinforcing-steel welded joints – LEARNING OUTCOMES									
	ACTIONS/ ACHIEVEMENTS	PERFORMANCE CRITERIA	EQF Level	KNOWLEDGE APPLICATION	PRACTICAL APPLICATION	COMPETENCES	WL			
IWE	Apply understanding of the principles of choice of joints and their de- sign.	Demonstrate highly spe- cialised knowledge and skills in controlling the	7	Interpret the design features of types of welded joint used for reinforcing steel in load bearing and non-load bearing locations.	Calculate the length of weld with respect to diameter.	Appraise a given reinforcing steel fabrication case study, define the	4			

		welding of reinforcing steel joints			Determine the required pre- heating temperature.	type of joint and appropriate weld- ing process. Determine the joint length, and the preheat required.	
IWT	Apply understanding of the principles of choice of joints and their de- sign.	Demonstrate advanced knowledge and skills in controlling the welding of reinforcing steel joints	6	Explain the types of welded joint used for reinforcing steel in load bearing and non-load bearing locations.	Calculate the length of weld with respect to diameter. Determine the preheating re- quirements for specified joints	Appraise a given reinforcing steel fabrication case study, decide the appropriate welding process for the type and length of joint, and define the preheat temperature re- quired.	1,5
IWS	Apply understanding of the principles of choice of joints and their de- sign.	Demonstrate specialised knowledge and skills in controlling the welding of reinforcing steel joints	5	Associate the types of welded joint used for reinforcing steel in load bearing and non-load bearing locations. Identify methods to determine the length of weld with respect to diameter.	Check the correct application of preheat.	Appraise a given reinforcing steel fabrication case study, explain the application of welding and pre- heating for the joint type, length and welding process given.	1,5
IWP				NOT APPLICABLE			

4.12 Case Studies

Objective for IWE, IWT and IWS: To understand and be able to handle welding related tasks in respect of the manufacture of specific welded products. The best way to give this education is a combination of experts from industry presenting special cases and project work to the students split up into groups, followed by a general discussion and comments by the experts. All of the following subjects have to be dealt with, the depth to which, however, will depend on the national needs.

Qualification	IWE	IWT	IWS	IWP
Teaching hours	40	28	14	0
Scope:	P3	P3	P3	
Steel and lightweight structures, boilers and pressure vessels, chemical plants and pipelines, shipbuilding and offshore applications, transportation (automobiles, railways), aerospace applications. Common items to be covered: Standards and specifications, design, Choice of materials, welding processes, Site welding (transport and final assembly), Consumables, welding procedures, Tolerances on weld preparation and fit-up, Post weld heat treatment, NDT and quality control, Visual Inspection practice (interpretation and evaluation of fractures and welds including interpretation of fracture tests of fillet welds)	X	X	X	_
Learning Outcomes: Not Applicable				

Module 4 – Fabrication, applications engineering

Madula 4	IV	VE	IV	VT	IV	VS	IM	/P
Wodule 4	MT	P1 *	MT	P1 *	MT	P1 *	MT	P1 *
Teaching Hours	116	0	83	0	56	0	29	0

* P1 = Part 1, Figures under P1 are given for the Standard Route (see 4.1)

I.2 Theoretical Education - IWS 0

The module IWS 0 aims at teaching basic technical knowledge, which in general is lacking in participants entering via the route 3 when compared to participants entering via routes 1 and 2. It provides the chance for professional workers and International Welding Practitioners to become qualified as International Welding Specialists

The module IWS 0 deals with the following subjects:

	Practical Training	Teaching hours:
0.1	Basic Metrology applicable to Welding	4
0.2	Technical Calculation	8
0.3	Technical Drawings	8
0.4	Basics of Electro-technology	2
0.5	Basics of Chemistry	2
0.6	Basics of Materials	2
0.7	Metal Products	2
0.8	Machining of Materials	2
0.9	Technical Mechanics	4
0.10	Joining Elements	2
0.11	Calculation of strength	4
		40

0.1 Basic Metrology applicable to Welding (4 hours)

Objectives: To guarantee a basic knowledge of metrology for an IWS to be able to control the quality in welding operations. To acquire a working knowledge of the metric system of measurements, i.e. the International System of Units (SI), related to welding.

Scope:

- Introduction to the metrology (basic concepts of metrology; necessity of standards for comparison; basic methods of measurement: measurement by indication, measurement by comparison; calibration standards: of mass, of length, etc);
- Basic knowledge on the metric system of measurements (International System of Units SI).
- SI units for length, area, volume, mass, time, electrical current, voltage, energy and power, force, frequency, pressure, linear speed, acceleration, temperature, heat, plane angle, and other, as well as their derivatives commonly used in welding.
- Commonly used multiplication factors, prefixes and their symbols.
- Basic instruments for linear measurement (rulers, tape measures, sliding calipers, micrometers, etc.);
- Other instruments of measurement (protractors, pressure gauges, flow meters, etc.);
- Patterns (for comparison): angle patterns, plate thicknesses patterns, etc.
- Practical exercises.

Learning Outcomes:

- 1. Understand objectives of the metrology.
- 2. List all SI base units and their symbols for length, mass, time, electric current, voltage, temperature, plane angle and other commonly used units related to welding.
- 3. List all SI derived units and their symbols for area, density, energy, force, frequency, power, pressure, volume, linear velocity, and other commonly used units related to welding.
- 4. List commonly used multiplication factors, prefixes and their symbols.
- 5. Know basic instruments for linear measurement.
- 6. Describe patterns and give some examples of their applications.
- 7. List and describe measuring instruments used in welding (except those used for electrical measurements which are dealt in the Item 0.4).

0.2 Technical Calculation (8 hours)

Objectives: To demonstrate how to make calculations related to welding involving various combinations of mathematical operations, powers, square roots, basic trigonometric functions, equations, variables including linear and angular measurements and time.

Scope:

- Simple mathematical operations such as addition, subtraction, multiplication, division, powers, square roots, percentage calculation, rule of three (transposition);
- Rearranging and solving of linear equations;
- Calculation of length, area and volume;
- Conversions between Metric and Imperial systems for the length, speed and gas flow rate units (Conversion tables);
- Conversions of the temperature value between Kelvin, Centigrade e Fahrenheit systems (Conversion tables);
- Calculation of the speed and acceleration;
- Trigonometric functions;
- Use of calculators for arithmetic operations and for trigonometric functions;
- Exercises for calculations involved in welding technology (gas flow rate, wire feed speed, welding travel, welding energy, mechanical resistance of materials, fusion and deposition rates, weld bead section and volume, material cost per weld linear unit or per welding time unit, etc.)

Learning Outcomes:

- 1. Show examples of mathematical operations of addition, subtraction, multiplication and division of whole numbers of different signs, decimals and fractions.
- 2. Show examples of powers of 0, 1, 2, of a number including 10.
- 3. Show examples of square roots of numbers greater than 1 and less than 1.
- 4. Show examples of linear equations and how the equations can be re-arranged, manipulated and solved.
- 5. Explain the definition of basic trigonometric functions of sine, cosine and tangent in terms of the ratios of the sides of a right-angled triangle.
- 6. Be able to calculate length, area, volume, speed and acceleration.
- 7. Be able to use conversion tables "Metric versus Imperial system" for the length, speed and gas flow rate units.
- 8. Be able to use conversion tables "Temperature value between Kelvin, Centigrade e Fahrenheit systems".
- 9. Show calculations related to welding involving various combinations of mathematical operations, powers, square roots, basic trigonometric functions and equations.
- 10. Show the use of pocket calculators for the above calculations and functions.

0.3 Technical Drawings (8 hours)

Objectives: To be able to read and understand basic technical drawings related to welding technology.

Scope:

- Introduction to the technical drawing.
- Purpose and importance of the technical drawing for the welding applications;
- Types of technical drawings (Detail Drawing, Assembly Drawing);
- Elaboration and presentation of technical drawings (sketch and final technical drawing);
- Projection views (orthographic projections: front, top, side; isometric);
- Scales;
- Types of lines (visible object line, hidden object line, center line, dimension line, ...);
- Sectional views, hatching;
- Symbols on the drawings;
- Drawing of different types of diagrams;
- Practical exercises.

Learning Outcomes:

- 1. Explain the purpose and importance of the technical drawing for the welding applications.
- 2. Know how to elaborate and present a technical drawing.
- 3. Know projection views.
- 4. Explain the use and indication of scales in engineering drawings.
- 5. Illustrate the various types of lines and their usage.
- 6. Explain sectioning symbols and methods and illustrate different sectional views.
- 7. Know how to draw different types of diagrams.

0.4 Basics of Electro-technology (2 hours)

Objectives: To acquire a basic knowledge of the industrial electricity in relation to the requirements of welding technology.

Scope:

- Electricity generation and distribution;
- Direct current (DC) and alternating current (AC);
- Single-phase supply;
- Three-phase supply;
- Star (Y) connection;
- Delta (Δ) connection;
- Circuits, connection diagram;
- Voltmeters, ammeters, ohmmeters and multi-meters used in welding;
- Lab exercises.

Learning Outcomes:

- 1. Briefly describe sources of electricity.
- 2. Describe the major differences between DC and AC current and give examples of their individual applications.
- 3. Describe the 50(60)-Hz alternating current and its sinusoidal waveform.
- 4. Describe single-phase and 3-phase AC power lines.
- 5. Define peak value, mean value and RMS value for either AC current or voltage.
- 6. Describe a star (Y) connection.
- 7. Describe a delta (Δ) connection.
- 8. Explain the working of voltmeters, ammeter, ohmmeters and multi-meters including digital multi-meters, and their applications related to welding.
- 9. Read connection diagrams and simple circuits.

0.5 Basics of Chemistry (2 hours)

Objectives: To acquire a basic knowledge of chemistry for the understanding of chemical reactions in welding processes, casting processes and chemical analysis of welds.

Scope:

- Principal chemical elements and their symbols (found in steels, aluminium alloys, nickel, copper and other materials used in welding);
- Simple reactions of reduction and oxidation (used in steel manufacturing, corrosion and combustion);
- Presentation of chemical composition of gases (by volume) and of solids (by mass);
- Chemical composition of the plain carbon, low alloy and high alloy steels (tables).

Learning Outcomes:

- 1. List basic chemical elements and their symbols in engineering steel, aluminium, nickel and copper, and their alloys.
- 2. Explain chemical reaction and its representation by the chemical equation with examples of chemical reactions in steel manufacturing.
- 3. Briefly explain the presentation of chemical composition of gases (by volume) and of solids (by mass).
- 4. List the various types of plain carbon, low alloy and high alloy steels, and their chemical compositions.

0.6 Basics of Materials (2 hours)

Objectives: To be informed about main metallic materials used in welding. To know how they are classified according to their main physical properties, and how they influence material applications.

Scope:

- Description, chemical and mechanical characteristics and application of the main metallic materials: structural steels, rail steel, sheet steels, pipe steels, steels for bars and wires, spring steels, steels for easy metal-working, steels for cementation and for nitriding, tool and die steels, wear-resistant steels, corrosion-resistant steels, hotwork steels, steels to be used for the electric and magnet purposes, high strength steels, cryogenic steels, white and grey cast irons, malleable cast iron, aluminium and its alloys, copper and its alloys (brass and bronze); method of the carbon content recognition in the steel by the grinding.

Learning Outcomes:

- 1. Description, application, types, physical properties of main metallic materials.
- 2. Know the difference between the main properties of steel, cast iron, aluminium and copper.
- 3. List types of steels for different applications.

0.7 Metal products (2 hours)

Objectives: To know different product form in which the metallic materials used in welding are commercially supplied and to have notions about methods of their production.

Scope:

- Different product form, denominations and commercial dimensions of wrought products (plates, flat profiles, rounds, hexagonal profile, angel bars, H and U-girders, round, square and rectangular pipes);
- General description of main methods to produce plates, profiles, pipes and girders (casting, forging, lamination, extrusion and welding).

Learning Outcomes:

- 1. List the main types of wrought products.
- 2. Recognize the different wrought products and know the correct terms.
- 3. Explain why the different properties are dependent on the wrought production method.
- 4. Be able to identify materials by their designation.

0.8 Machining of Materials (2 hours)

Objectives: To be informed about the different methods to machine metals, ferrous and non ferrous alloys

Scope:

- Fundamentals of metal machining methods: cutting and abrasive tools;
- Main methods of metal machining using cutting tools (drilling, turning machining, planning machining, milling, sawing, etc.);
- Mechanical cutting using abrasive tools;
- Selection of emery, cutting and trimming discs in function of the material and of the piece form.

Learning Outcomes:

- 1. Know the most important machining methods.
- 2. Be able to describe the difference between cutting and abrasive machining.
- 3. List main abrasive methods.
- 4. List the most important cutting methods.
- 5. Select emery, cutting and trimming discs in function of the material and of the piece form.

0.9 Technical Mechanics (4 hours)

Objectives: To be able to make simple calculations of the forces found in welding activities.

Scope:

- Definition of force, practical examples of forces and units of force;
- Simple splitting of the force (in function of the angle) and addition of forces within a system of coordinates (practical examples: inclined plane, load lifting, etc.);
- Bending moments and torsional moment (practical examples: moment arm and winch pulley);
- Static systems (reactions of forces and equilibrium conditions);
- Practical exercises.

Learning Outcomes:

- 1. Graphically splitting of forces.
- 2. Find the resultant force from more forces through one point.
- 3. Determine simple bending moments and bending forces.
- 4. Calculate support forces (reactions).

0.10 Joining elements (2 hours)

Objectives: To know different types of non-welding joining of different materials and transfer force particularities for those joints.

Scope:

- Dismantling joining types in comparison with welding (non dismantling one);
- Screw joining;
- Riveting;
- Adhesive bonding;
- Transmission fastening elements (e.g., pins, keys, guiding link, etc.).

Learning Outcomes:

- 1. List different types of material joining.
- 2. Make a comparison of dismantling joining types versus welding (non dismantling one).
- 3. Know the difference between static and transmission joints.

0.11 Calculation of Strength (4 hours)

Objectives:

Understand the difference between static mechanics and strength of materials. Knows what data can be determined during a tensile test. Recognise the different kinds of girders.

Scope:

- Elongation, deflections
- Areas of complex cross sections
- Moment of inertia, section modulus
- Stress calculation
- Stability of pieces
- Different cross sections
- Bending of girders and frames

Learning Outcomes:

- 1. Able to draw a tensile test diagram.
- 2. Able to explain the tensile test diagram.
- 3. Calculate/verify tension.
- 4. Calculate section modulus.
- 5. Calculate moment of inertia.
- 6. Calculate cross section area.

Total 40 hours

I.3. Practical Education – Part 2

I.3.1 For the IWE; IWT, and IWS

This part does not aim at providing practical skills to the welding engineer/technologist/specialist but on gaining knowledge on the control of the different welding processes. The students shall become as familiar as possible with the problems and typical defects associated with incorrect use of the different welding methods. During their exercises the students are guided by skilled welding teachers.

Practical Training	hours:
Oxygas welding and cutting	6
MMA	8
TIG	8
MIG/MAG + Flux Cored Arc Welding	16

It is possible to use the advantages of Virtual Weld Training systems but maximum to 50% of the practical training hours!

Gouging	
Brazing	
Plasma welding	
Plasma cutting	
Submerged-arc welding	
Resistance welding	
Friction welding	
Electron beam welding	
Laser welding	
Other processes	

Total: 60

It is strongly recommended that ATBs provide demonstrations instead of videos wherever possible.

Candidates may be exempted by the ATB from the practical training, on a process by process basis, if they can demonstrate practical experience and/or training in the process concerned.

The laboratory exercises contained in the foregoing modules 1 to 4 of the theoretical part are additional and given usually at a later stage of the education.

I.3.2 For the IWP

The practical training has to be done on an individual basis.

The main processes are: MMA, MIG/MAG, FCAW, TIG and Gas Welding. 40 hours shall be reserved to broaden the student's skill in other relevant materials within his welder qualification/s. This training shall end with a practical examination in more than one process or more than one group of materials (according ISO 9606 or national standards). For MIG welding only material group 22 and for Gas welding only material groups 1.1 and 1.2 are relevant.

If a student can demonstrate existing practical skill in and an understanding of the welding of different materials, it is accepted that he can sit for the practical examination in these processes and materials without prior practical training.

Typical test pieces and positions are given in Table 1. The test pieces shall be welded as single side welding without backing, except for aluminium, where backing is allowed. Each ANB will work to a similar table based on comparable national standards.

Valid national certificates are accepted as replacements for the practical examinations with test pieces in Table 1.

Table 1: Recommended test pieces and positions for practical examinations:

The dimensions given in the table are recommended/proposed, but not mandatory, other dimensions are accepted.

Welding	process	Practical Test		
ISO 9606	ISO 9606	Material Group (ISO TR 15608)	Welding Position	Test Dimension(s) Diameter/Thickness
		1	PF/BW	6,0 – 13,0
		3	PF/BW	6,0 – 13,0
MMA	111	4, 5, 6	H-L045/BW	∅60,3 – ∅114.3/ 3.9 – 7.11
		7	PF/BW	6,0 – 13,0
		8	PB/FW	6,0 – 13,0
		1	H-L045/BW	Ø60,3 – Ø114.3 3.9 – 7.11
TIG		3	PF/BW	2,0-6,0
	141	4, 5, 6	H-L045/BW	Ø60,3 − Ø114.3 3.9 − 7.11
		7	PF/BW	Test Dimension(s) $6,0 - 13,0$ $6,0 - 13,0$ $6,0 - 13,0$ $6,0 - 13,0$ $060,3 - \emptyset 114.3/$ $3.9 - 7.11$ $6,0 - 13,0$ $6,0 - 13,0$ $060,3 - \emptyset 114.3/$ $3.9 - 7.11$ $060,3 - \emptyset 114.3$ $3.9 - 7.11$ $2,0 - 6,0$ $\emptyset 60,3 - \emptyset 114.3$ $3.9 - 7.11$ $2,0 - 6,0$ $\emptyset 60,3 - \emptyset 114.3$ $3.9 - 7.11$ $2,0 - 6,0$ $\emptyset 60,3 - \emptyset 114.3$ $3.9 - 7.11$ $2,0 - 6,0$ $\emptyset 6,0 - 13,0$ $6,0 - 13,0$ $6,0 - 13,0$ $6,0 - 13,0$ $0,0 - 13,0$ $0,0 - 13,0$ $0,0 - 13,0$ $0,0 - 13,0$ $0,0 - 13,0$ $0,0 - 13,0$ $0,0 - 13,0$ $0,0 - 13,0$ $0,0 - 13,0$
		8	H-L045/BW	
		22	PF/BW	2,0-6,0
MIG	131	22	PF/BW	6,0 – 13,0
MAG	135	1	PF/BW	6,0 – 13,0
(and/or metal cored)	(136)	8	PB/FW	6,0 – 13,0
		1	PF/BW	6,0 – 13,0
FCAW (flux cored only)	136	8	PF/BW	6,0 – 13,0
		3	PA/FW	6,0 - 13,0
GAS	311	1	H-L045/BW	Ø60,3 – Ø114.3 3.9 – 7.11

Twenty hours shall be reserved to give the student basic understanding of the possibilities and limitations of the other processes mentioned in Table 1. The purpose of this training is only to demonstrate the possibilities and limitations of these processes, and no practical examination is required. If the student can demonstrate to the training establishment skill in and understanding of the other processes, he may be exempted from this training.

Acceptance criteria for the practical examination:

The quality of welding shall comply with ISO 9606, or comparable quality levels defined in National welders' qualification standards used by IAB Group A countries. A welder qualification certificate may be issued.

Section II: Examination and Qualification

Note: Other rules/procedures are covered in Document IAB-001- (see latest edition).

1. Introduction

This guideline seeks to achieve international harmonisation and a common standard in the examination and qualification of professional welding engineers, technologists, specialists and practitioners. The national welding organisations, being members of the IIW/EWF, mutually acknowledge the Diplomas awarded in any Member Country to International Welding Engineers, Technologists, Specialists and Practitioners, following examination conducted in accordance with this Guideline.

Education must have followed this IIW guideline and the examination must have been conducted by the Authorised Nominated Body.

2. Approval of Training Courses

Any training course leading to the examination must be approved by the ANB. The number of teachers required to give the course shall be sufficient to ensure that the essential specialist knowledge and industrial experience to cover the syllabus are adequately represented in the team of teachers and visiting lecturers.

3. Examination Board

An Examination Board, acting on behalf of the ANB supervises the ANB National part of the examination process. In this way, independence, integrity and fairness of the examination system are maintained.

4. Admission to the Examination

Admission to the examination leading to the award of the International Welding Engineer, Technologist, Specialist and Practitioner diploma will be restricted to those:

- b) Who comply with the minimum requirements specified in the directory of access conditions, and
- c) Standard Route: Who have attended at least 90% of the course (Exemptions are at the discretion of the ANB), approved by the ANB, according to this guideline., or
- d) Who have attended a Distance Learning Course approved by the ANB fulfilling the requirements of guideline IAB-195-see latest edition, or
- e) Alternative Route: Who have successfully passed the ANB detailed assessment (see diagram 9)

5. Examination procedures

This guideline defines the minimum requirements for examinations. ANBs are free to exceed these if they wish.

The examination procedures described below are designed to test the candidate's knowledge and understanding of different situations in welding technology. There will be written and oral examinations (where applicable) in each of the following modules (held either on completion of each Module of the syllabus or at the end of the course):

- a) Welding processes and equipment
- b) Materials and their behaviour during welding
- c) Construction and design
- d) Fabrication and applications engineering

The final examination has to cover all training parts (1 to 3).

All ANBs shall apply the harmonised examination system as a part of the total time allocated by the ANB written examination. This shall be done according to OP-17.

Both written and oral examinations, where applicable, may be held either on completion of each Module of the syllabus or at the end of the course.

5.1 Written examination

At the discretion of the Examination Board the examination shall consist of:

- a) A series of essay questions covering the whole field of the module
- or
 b) A series of multiple choice questions covering the whole field of the module or
- c) A combination of a) and b)

The time devoted to the written examination shall be a minimum of:

IWE level - 2.0 hours per module, i.e. 8 hours in all.

- IWT level 1.5 hours per module, i.e. 6 hours in all.
- IWS level 1.0 hour per module, i.e. 4 hours in all.
- IWP level 2.0 hours in total for the four modules

The duration of the harmonised examination is always a part of the total time above mentioned for each qualification level.

The harmonised exam matrix and duration is defined for each IIW qualification level according to OP - 17. The harmonised exams are automatically generated by the IIW harmonised exam management software.

All questions that are active in the IIW harmonised examination database have been evaluated and approved by the IIW appointed Experts.

The ANB's Examination Board has no active task in terms of exam development, generation and scoring of the harmonised exams.

Note: For the time being the ANB has the option to take into account the results of the harmonised examination or ignore them when reaching a decision about the candidate's overall results.

5.2 Oral Examination

When an oral examination is required it shall take place after the written module examination(s) have been concluded. The oral examination is designed to test understanding and ability to reason in the field of welding.

Oral examination is only mandatory for the IWE level, but at the discretion of the Examination Board IWE Candidates may be granted exemption from oral examination in any module in which they achieved >75% of the maximum possible mark in the written examination. For the other levels of training the oral examination will be optional at the discretion of the Examination Board.

In the borderline cases (to be defined by the ANB) oral examination shall be recommended.

For the IWE level the total time devoted to the oral examination, covering all four modules, shall be a minimum of 1 hour per candidate.

5.3 Practical examination

The practical examination is only applied for the IWP qualification level. It shall be implemented as described in section I, item 3.2.

5.4 Intermediate examination

An intermediate examination is only necessary if the courses are carried out in three separate parts (1 to 3). The intermediate examination is mandatory for access Route 2 and it is the responsibility of the Authorised National Body (ANB) to ensure that those entering by this Route 2 have achieved the required knowledge of Part 1 to enter Part 3 of the course.

At the discretion of the ANB the intermediate examination shall consist of:

- a) A series of essay questions covering the whole field of Part 1 of the modules or
- b) A series of multiple-choice questions covering the whole field of Part 1 of the modules or
- c) A combination of a) and b)

The time devoted to the intermediate examination shall be a minimum of:

IWE level –1.0 hourIWT level –1.0 hourIWS level –30 minutesIWP level –30 minutes

Failure in the intermediate examination shall require re-examination. Examinations can be retaken after 24 hours minimum. Failure in a second re-examination will require the student to enter Part 1 of the course.

5.5 Resources to be used in examinations except harmonised examinations

Programmable calculators, smartphones, tablet PC's, formulary, course material, etc. are allowed to be used only at the discretion of the Board of Examiners.

6. Evaluation of Performance

Written and oral examinations shall usually have equal importance (50%), but the weight of the oral examination may, at the discretion of the Board of Examiners, be set anywhere within the range of 40% to 60%. The weighting of the oral examination shall be announced before the start of the examination.

In order to pass the examination candidates shall achieve at least

60% of the maximum possible mark in each module examination

The final decision has to be given by the chairman of the Board of Examiners.

The examination in all four modules shall be completed within a period of 6 years from the date of the first (modular) examination.

7. Re-examination

Failure in any individual module of the examination shall require re-examination only in the module failed. If a candidate fails in any of the 4 modules three times, they must retake the classes of the modules failed and the full examination of the module failed.

8. Appeals Procedure

Candidates who feel they have been unfairly treated during the examination procedure have the right to appeal to the Authorised National Body.

9. International Welding Diploma's

After successful examination, a diploma is awarded to the candidate by the Authorised National Body.

10. Transition Arrangements

All National Transition Arrangements are published on the IAB Transition Arrangements Directory, doc. IAB-021- (see latest edition).

Each country's specific Transition Arrangements are approved by the IAB Group B and may be obtained from each Authorised National Body.

An ANB can offer Transitional Arrangements with indefinite closing date according to the Rules IAB-001, paragraph 1.12 – latest edition

Practising Welding Engineers, Technologists, Specialists and Practitioners will be eligible for the award of the International Welding Engineer, Technologist, Specialist and Practitioner Diploma, if they can demonstrate to the ANB that their combination of education, training and experience in welding technology has provided a level of knowledge equivalent to the current IAB requirements and if they fulfil the ANB requirements defined in the Transition Arrangement Directory.

Two additional general rules shall be observed when applying the Transitional Arrangements:

- 1. Applicants shall possess the basic qualification and experience defined in relevant guideline and in the Access Condition Directory, Doc. IAB-020- (see latest edition) -..
- 2. Diplomas may be awarded under Transitional Arrangements in the following cases:
 - a) by the ANB in the country in which the applicant received his/her welding qualification OR
 - b) by the ANB in the country in which the applicant is currently practising, in contact with the ANB of the country in which the original qualification was issued.

Appendix I: <u>Requirements for equipment, facilities and specimens for the International Welding</u> Engineer (IWE), Technologist (IWT), Specialist (IWS) and Practitioner (IWP) course leading to the <u>award of IIW</u> gualification

1. Equipment

The following equipment shall be in good working order and fit for its purpose:

1.1 Welding equipment

Equipment for the following processes shall be available for practical exercises.

Manual metal arc welding	111
MIG welding	131
MAG welding	135/136/138
TIG welding	14
Gas welding	311
Gas flame cutting	81

Further processes covered by the syllabus may be shown by means of demonstrations or video presentations.

1.2 Other equipment

Mechanical testing, metallurgical examination and NDT equipment shall be available for both demonstration and laboratory work purposes.

2. Specimens

A reference collection of well documented weld specimens, polished and etched, should. reflect the processes covered by the Guideline and one specimen per process is required (at minimum for the most common welding processes – see syllabus item 1.2 to 1.12.1; recommended is to show all other processes by means of slides, photos, etc.). Preferably the specimens should cover a number of materials and thicknesses.

Appendix II: Abbreviations for Processes

The following abbreviations used in the document show the relation between the ISO designation, the process abbreviations used in Europe and those used in the USA.

ISO 4063	Europea	In (EA) and	Full name
			Manual Metal Arc Welding
111		SMAW	Shielded Metal Arc Welding
	FA	FCAW	Self-shielded tubular cored arc
114	AA	FCAW	Self-shielded tubular cored arc welding
	EA	SAW	Submerged Arc Welding
12	AA	SAW	Submerged Arc Welding
	EA	GMAW	Gas Shielded Metal Arc Welding
13	AA	GMAW	Gas Metal Arc Welding
	EA	MIG	MIG welding with solid wire electrode
131	AA	GMAW	Gas metal arc welding using inert gas and solid wire electrode
132	EA	MIG	MIG welding with flux cored elec- trode
	AA	FCAW	Flux cored arc welding
	EA	MAG	MAG welding with solid wire electrode
135	AA	GMAW	Gas metal arc welding using active gas with solid wire electrode
	EA	MAG	MAG welding with flux cored electrode
136	AA	FCAW	Gas metal arc welding using active gas and flux cored electrode
	EA	MAG	MAG welding with metal cored electrode
138	AA	FCAW	Gas metal arc welding using active gas and metal cored electrode
	EA	TIG	TIG welding with solid filler material (wire/rod)
141	AA	GTAW	Gas tungsten arc welding using inert gas and solid filler material (wire/rod)
	EA	TIG	Autogenous TIG welding
142	AA	GTAW	Autogenous gas tungstenarc weldingusing inert gas
21	EA		Resistance spot welding
<u> </u>	AA	RSW	Spot Welding
25	EA		Resistance Butt Welding
20	AA	RSEW	Upset Welding
2	EA		Gas Welding
3	AA	OFW	Oxy-fuel Gas Welding
044	EA		Oxy-acetylene Welding
311	AA	OAW	Oxy-acetylene Welding

ISO 4063	Europear American (AA	n (EA) and) abbreviations	Full name
40	EA	FW	Friction Welding
42	42 AA FW		Friction Welding
42	EA	FSW	Friction Stir Welding
43	43 AA FSW		Friction Stir Welding
01	EA		Flame Cutting
01	AA	OFC	Oxygen Cutting, oxyfuel cutting
86	EA		Flame Gouging
AA AA		Thermal Gouging	

Appendix III: Requirements for ANB Detailed Assessment used in Alternatives Routes

After the candidate has fulfilled the requirements of the ANB paper check he will be admitted to the ANB Detailed Assessment (Diagram 9).

Diagram 9: ANB detailed Assessment

The ANB detailed assessment shall include:

- a) a detailed paper assessment of the candidate's CV for evidence of that the candidates knowledge of the subject matter in guidelines 1 to 4 is consistent with the relevant qualification level. This is achieved using a check list with point allocations
- b) a project or a technical interview to test the candidate's ability to logically apply the knowledge expected by the relevant qualification guideline in module 4 (Fabrication, applications engineering).

The sequence of this assessment shall be determined by the ANB. It is within the discretion of the ANB to terminate the assessment at any point and defer the application or re-direct the candidate to the standard route.

The paper assessment shall be based on a review of the applicant's experience and education against the IIW guideline and access conditions. This review will be based on the information provided by the applicant, as outlined in his/her Curriculum Vitae and in supporting documentation which may include course outline, transcripts, certification documents, diplomas, degrees, etc.

Modules		Frames of requirements (max. number of points) for:IWE and IWTIWS and IWP22222115		
		IWE and IWT	IWS and IWP	
	Module 1: Welding processes and equipment	22	22	
	Module 2: Materials and their behaviour during welding	21	15	
	Module 3: Construction and design	19	11	
	Module 4: Fabrication and applications engineering	22	20	
	Sum	84	68	

a) The **detailed paper assessment** shall be done with the following point system:

Detailed distribution of points for Modules 1, 2, 3 and 4

Module 1: Welding processes and equipment	Max. number of points		
	IWE and IWT	IWS	IWP
111 - MMA	3	3	4
14 - TIG and 15 - Plasma	2	2	2
131 - MIG	2	2	2
135 - MAG	2	2	2
114, 136 and 138 - Flux-cored methods	3	3	3
91, 93 and 97 - Brazing methods	2	2	0
81, 82 and 83 - Thermal cutting	2	2	3
12 - SAW	3	3	3
Other methods	3	3	3
Sum:	22	22	22

Module 2: Materials (acc. to ISO/TR 15608) and their be-		Max. nu	mber of poi	nts
haviour during we	elding	IWE and IWT	IWS	IWP
Steel alloys	groups 1 – 3 and 11	4	4	6
Cr-Mo- and vanadium steels:	groups 4 - 6	2	1	1
Ferritic and martensitic steels	group 7	3	2	2
Austenitic and aust./fer. steels	groups 8 and 10	4	2	3
Steel-Ni- alloys, max 10% Ni	group 9	1	1	1
Aluminium and alloys	groups 21 - 26	3	2	2
Copper and alloys	groups 31 - 38	1	1	0
Nickel and alloys	groups 41 - 48	1	1	0
Ti, Zr and alloys gro	oups 51 – 54 and 61 - 62	1	0	0
Cast iron	groups 71 - 76	1	1	0
	Sum:	21	15	15

odule 3: Construction and design Max. number of points		nts	
	IWE and IWT	IWS	IWP
Stresses and strains	5	2	0
Design of welded structures - static loading	3	3	4
Design of welded structures - dynamic loading	3	1	2
Joint design & design principles of welded structures	4	4	5
Design of structures of aluminium and its alloys	4	1	0
Sum:	19	11	11

Module 4: Fabrication and applications engineering	Max. number of points		
	IWE and IWT	IWS and IWP	
Quality assurance in welded fabrication	4	3	
Quality control during manufacture	3	3	
Welding stresses and distortion	4	4	
Plant facilities, welding jigs and fixtures	2	2	
NDT	3	3	
Economics	2	1	
Health and safety	2	2	
Repair welding	2	2	
Sum:	22	20	

As a minimum, the applicant shall reach 50% in each module to be admitted to the project or technical inter-view.

Note: If an applicant has a certification at the relevant level which covers a module the ANB may accept this as equivalent to the required 50% level.

Welder Qualification Certificate (for IWP candidate only)

A minimum of two valid welder qualification certificates corresponding with Section I, Chapter 6 of the standard route shall demonstrate in common with the paper assessment.

b) Project or Technical Interview

At the discretion of the ANB, the candidate shall:

- complete a project, which includes a practical application, and provide a final report and discussion;
 - <u>or</u>
- > be assessed via a technical interview.

Each of these assessment routes are explained below.

b.1) Project

The project shall be in form of a case study. The purpose of the project is to evaluate the candidate's ability to apply knowledge in the area of Fabrication, applications engineering (module 4). The project should be of sufficient complexity and detail that the typical time allocated for completion meets the requirements set out in the table below. Once started the project should be completed within a maximum period of time which is also shown in the table below.

At the discretion of the ANB the case study may be performed as a group exercise. Each candidate shall, however, prepare a final report and presentation (b.1-3 below) individually.

Time a constitue o	Qualification level			
I Ime conditions	IWE	IWT	IWS	IWP
Time allocated time for project completion	80 hours	60 hours	40 hours	8 hours
Maximum period in which the project should be completed.	4 weeks	3 weeks	3 weeks	1 week

The ANB shall decide on the choice of project construction and the applicable codes and/or product standards. One of the following type of construction shall be taken:

Type of construction	Qualification level				
Type of construction	IWE	IWT	IWS	IWP	
Pressure vessel	Х	Х	Х	Х	
Construction – static loading	Х	Х	Х	Х	
Construction – dynamic loading	Х	Х	Х		
Other construction	Х	Х	Х	Х	

Alternatively, the ANB may, at its discretion, accept a proposal for a project from the candidate based on the candidate's field of work. In such a case the project shall meet allocated time and maximum period requirements mentioned above.

The project work is detailed as following:

b.1 - 1 Pre-study	IWE	IWT	IWS	IWP
Pre-study including a workmanship example.	-	-	-	Х
Understand the consequences of the desired manufacturing code.	Х	Х	Х	-
Evaluation of drawings and technical specifications.	Х	Х	-	-
Read and understand drawings and technical specifications.	-	-	Х	Х
• Evaluation of and comments to the choice of base materials. Discuss the weldability of the materials. Any needs for pre- and post-weld heating.	х	х	-	-
• Knowledge about the choice of base materials. Discuss the weldability of the materials. Any needs for pre- and post-weld heating.	-	-	Х	Х
Evaluation of the construction based on the choice of:	Х	Х	Х	
Discussion of the construction based on the choice of:	-	-	-	Х
 Joining method(s) for the base material(s); 	Х	Х	Х	Х
 – Cutting method(s) for preparation of base material parts; 	Х	Х	Х	Х
 Joint preparation and weld calculation; 	Х	Х	Х	-
– Joint preparation;	-	-	-	Х
– Welding consumables;	Х	Х	Х	Х
 Need of surface treatment before welding; 	Х	Х	Х	Х
 Surface treatment of finished construction - method(s) to be used. 	Х	Х	-	-
Preparation of necessary WPSs and testing methods.	Х	Х	Х	-
Interpretation of necessary WPSs.	-	-	-	Х
Evaluation of necessary welding qualification(s) for welder(s).	Х	Х	Х	-
• Interpretation of necessary welding qualification test(s) for welder(s).	-	-	-	Х
Present NDT methods to be used during and after welding.	Х	Х	Х	-
• Discuss possible NDT methods that can be used during and after welding, including special tests to check the entire quality of the construction.	-	-	-	х
Prepare:				
– Production plan;	Х	Х	Х	-
 Welding plan – including welding sequence and tack welding; 	Х	Х	Х	-
 List of standards needed for the project; 	Х	Х	-	-
 Quality plan for the production based on relevant part of ISO 3834 or equivalent. Type of workshop for this kind of production shall be discussed. 	х	х	х	-

b.1 - 2 Practical part on the construction or on test pieces – simulat- ing the same construction – provided by the ANB	IWE	імт	IWS	IWP
Checking:				
 Marking(s) and certificate(s) on base material(s); 		Х	Х	Х
 Welder(s) qualification test certificate(s); 		Х	Х	Х
 Qualification of personnel for destructive testing, NDT and inspec- tion. 		Х	Х	-
• Evaluation of test results and compare with pre-study figures.		Х	Х	-
Plan for inspection before and during welding.		Х	Х	-
 Inspection after welding based on pre-study plans – (visual inspection and other NDT methods, eventually pressure testing or other testing methods). 		х	х	-
Discussion of inspection reports.		-	-	Х
 Evaluation of the welding and test results based on inspection and NDT reports. 		Х	Х	-
 If evaluation shows need for repair, plan(s) for repair welding and eventually WPSs for repair welding to be made. 		Х	Х	-
Evaluation of fabrication costs.		-	-	-

b.1 - 3 Final report and presentation	IWE	IWT	IWS	IWP
• The candidate shall prepare a final written report with results from his project based on the pre-study figures and the practical part.	Х	Х	Х	-
• The report shall include viewpoints regarding economy of production and at same time ensure the quality of the product.	х	Х	Х	-
• The candidate shall give an oral presentation of the project to the board of examiners.	Х	Х	Х	-
• The candidate shall give an oral report of results from his project based on the pre-study figures and the practical part.	-	-	-	Х

b.2) Technical Interview

Technical Interview:

Technical Interview duration is at least:			
IWE level	IWT level	IWS level	IWP level
6 hours	4 hours	3 hours	2 hours

The Technical Interview will be divided in 2 parts, they are:

- i) Applicant discussion regarding Part 1 Evaluation of the Knowledge (see table below)
- ii) Applicant discussion regarding Part 2 Evaluation of Practical knowledge (see table below)

Before the Technical Interview the candidate shall be allowed at least 1 hour to become acquainted with the documentation that will be used during the interview. The interview should normally be completed face to face. At the discretion of the ANB the interview may be conducted remotely using a computer based visual interview package provided that the interview process is secure and examination conditions can be maintained.

The ANB shall supply the applicant with a set of documents (construction drawings - part of a construction, list of materials, materials certificates, NDT reports, destructive testing reports, WPQRs, WPSs, Welder Approvals).

Or

The applicant may present to the ANB a set of documents (construction drawings - part of a construction, list of materials, materials certificates, NDT reports, destructive testing reports, WPQRs, WPSs, Welder's Approvals). The documents should be from the company where the applicant is currently employed. The ANB shall review the documentation provided by the candidate before confirming that it is suitable and acceptable for use in the Technical Interview.

The technical interview shall address at least the subjects mentioned on the tables below.

i) Part 1 - Evaluation of the Knowledge

b.2 - 1 Discussion of the Construction		IWT	IWS	IWP
Evaluation of drawings and technical specifications.	Х	Х	-	-
Read and understand drawings and technical specifications.	-	-	Х	Х
 Evaluation of and comments to the choice of base materials. Discuss the weldability of the materials. Any needs for pre- and post-weld heat- ing. 		x	-	-
• Knowledge about the choice of base materials. Discuss the weldability of the materials. Any needs for pre- and post-weld heating.	-	-	х	х
 Evaluation of the construction based on the choice of: 		Х	Х	-
Discussion of the construction based on the choice of:	-	-	-	Х
 Joining method(s) for the base material(s); 	Х	Х	Х	Х
 – Cutting method(s) for preparation of base material parts; 	Х	Х	Х	Х
 Joint preparation and weld calculation; 	Х	Х	Х	-
– Joint preparation;	-	-	-	Х
– Welding consumables;	Х	Х	Х	Х
 Need of surface treatment before welding; 	Х	Х	Х	Х
 Surface treatment of finished construction - method(s) to be used. 		Х	-	_
Preparation of necessary WPSs and testing methods.		Х	Х	-
Interpretation of necessary WPSs.		-	-	Х
 Evaluation of necessary welding qualification(s) for welder(s). 		Х	Х	-
• Interpretation of necessary welding qualification test(s) for welder(s).	-	-	-	Х
Present NDT methods to be used during and after welding.	Х	Х	Х	-
• Discuss possible NDT methods that can be used during and after welding, including special tests to check the entire quality of the construction.	-	-	-	x
Discussion of the construction in terms of:	-	-	-	-
 Welding plan – including welding sequence and tack welding; 		Х	Х	-
 Standards needed for the project; 		Х	-	-
 Quality plan for the production based on relevant part of ISO 3834 or equivalent. Type of workshop for this kind of production shall be discussed. 	x	x	x	-
– Jigs, fixtures, welding equipment	Х	Х	Х	Х

ii) Part 2 – Practical discussion

b.2 – 2 Practical Part		імт	IWS	IWP
Checking:				
 Certificate(s) on base material(s); 	Х	Х	Х	Х
 Welder(s) qualification test certificate(s); 		Х	Х	Х
 Qualification of personnel for destructive testing, NDT and inspec- tion. 		Х	Х	-
 Welding Procedure Qualification Record - WPQR; 		Х	Х	-
 Welding Procedure Specification - WPSs; 		Х	Х	Х
Evaluation of test results and discussion of the reports.		Х	Х	-
 Proposal for a Plan for inspection before, during and after welding and discussion. 		х	Х	-
Discussion of inspection reports.		-	-	Х
 Evaluation of the welding and test results based on inspection and NDT reports. 		х	Х	-
 Welds needing for repair, plan(s) for repair welding and eventually WPSs for repair welding to be made. 		Х	Х	-
Brief discussion on fabrication costs.		-	-	-

When the ANB has confirmed that the candidate has met the requirements of the detailed paper assessment and the project or technical interview process, he/she is admitted to the final examination defined for the relevant guideline.

Appendix IV: List of Referenced Standards

Standard (-series)	Title
ASME IX	American Society of Mechanical Engineers; Boiler and Pressure Vessel Code, Section IX: Welding and Brazing Qualifications
ISO/TR 581	Weldability – Metallic Materials, Definitions
ISO/TR 17671-1 (EN 1011-1)	Welding - Recommendations for welding of metallic materials - Part 1: General guidance for arc welding
ISO/TR 17671-2 (EN 1011-2)	Welding - Recommendations for welding of metallic materials - Part 2: Arc welding of ferritic steels
ISO 17639	Destructive tests on welds in metallic materials - Macroscopic and microscopic examination of welds
ISO 14732	
	Welding personnel — Qualification testing of welding operators and weld setters for mechanized and automatic welding of metallic materials
EN 1708	Welding - Basic weld joint details in steel (series)
ISO 2553	Welded, brazed and soldered joints - Symbolic representation on drawings
ISO 3834	Quality requirements for fusion welding of metallic materials (series)
ISO 4063	Welding and allied processes - Nomenclature of processes and reference numbers
ISO 5817	Welding - Fusion-welded joints in steel, nickel, titanium and their alloys (beam welding excluded) - Quality levels for imperfections
ISO 9000	Quality management systems (series)
ISO 9606	Approval testing of welders - Fusion welding (series)
ISO 9692	Welding and allied processes - Recommendation for joint preparation (series)
ISO 9712	Non-destructive testing - Qualification and certification of personnel
ISO 10042	Welding - Arc-welded joints in aluminium and its alloys - Quality levels for imper- fections
ISO 17635	Non-destructive examination of welds - General rules for metallic materials
ISO 13916	Welding - Guidance on the measurement of preheating temperature, interpass temperature and preheat maintenance temperature
ISO 13920	Welding - General tolerances for welded constructions - Dimensions for lengths and an- gles - Shape and position
ISO 14731	Welding coordination - Tasks and responsibilities
ISO/TR 15135	Welding - Design and non-destructive testing of welds
ISO/TR 15235	Welding - Methods for assessing imperfections in metallic structures

IAB-INTERNATIONAL AUTHORISATION BOARD

Standard (-series)	Title
ISO/TR 15481	Welding of reinforcing steel - Tack weldability - Test methods and performance requirements
ISO 15607	Specification and qualification of welding procedures for metallic materials - General rules
ISO/TR 15608	Welding - Guidelines for a metallic material grouping system
ISO 15609	Specification and qualification of welding procedures for metallic materials – Welding procedure specification (series)
ISO 15610	Specification and qualification of welding procedures for metallic materials - Qual- ification based on tested welding consumables
ISO 15611	Specification and qualification of welding procedures for metallic materials - Qual- ification based on previous welding experience
ISO 15612	Specification and qualification of welding procedures for metallic materials - Qual- ification by adoption of a standard welding procedure
ISO 15613	Specification and qualification of welding procedures for metallic materials - Qual- ification based on pre-production welding test
ISO 15614	Specification and qualification of welding procedures for metallic materials - Weld- ing procedure test (series)
ISO/TR 16060	Destructive tests on welds in metallic materials — Etchants for macroscopic and microscopic examination
ISO 17660	Welding - Welding of Reinforcing Steel (series)
ISO 17662	Welding - Calibration, verification and validation of equipment used for welding, including ancillary activities
ISO 17663	Welding - Guidelines for quality requirements for heat treatment in connection with welding and allied processes